本文整理汇总了C++中realvec类的典型用法代码示例。如果您正苦于以下问题:C++ realvec类的具体用法?C++ realvec怎么用?C++ realvec使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了realvec类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Std
static mrs_real Std (const realvec& beatHistogram)
{
return sqrt (beatHistogram.var ());
}
示例2: getctrl
void
SOM::myProcess(realvec& in, realvec& out)
{
mrs_string mode = getctrl("mrs_string/mode")->to<mrs_string>();
mrs_natural o,t;
mrs_real geom_dist;
mrs_real geom_dist_gauss;
int px;
int py;
MarControlAccessor acc_grid(ctrl_gridmap_);
realvec& grid_map = acc_grid.to<mrs_realvec>();
if (mode == "train")
{
mrs_real dx;
mrs_real dy;
mrs_real adj;
for (t=0; t < inSamples_; t++)
{
px = (int) in(inObservations_-2, t);
py = (int) in(inObservations_-1, t);
if ((px == -1.0)&&(px == -1.0))
{
find_grid_location(in, t);
px = (int) grid_pos_(0);
py = (int) grid_pos_(1);
}
out(0,t) = px;
out(1,t) = py;
out(2,t) = in(inObservations_-3,t);
for (int x=0; x < grid_width_; x++)
for (int y=0; y < grid_height_; y++)
{
dx = px-x;
dy = py-y;
geom_dist = sqrt((double)(dx*dx + dy*dy));
geom_dist_gauss = gaussian( geom_dist, 0.0, neigh_std_, false);
// subtract map vector from training data vector
adj = alpha_ * geom_dist_gauss;
for (o=0; o < inObservations_-3; o++)
{
adjustments_(o) = in(o,t) - grid_map(x * grid_height_ + y, o);
adjustments_(o) *= adj;
grid_map(x * grid_height_ + y, o) += adjustments_(o);
}
}
}
alpha_ *= getctrl("mrs_real/alpha_decay_train")->to<mrs_real>();
neigh_std_ *= getctrl("mrs_real/neighbourhood_decay_train")->to<mrs_real>();
}
if (mode == "init")
{
mrs_real dx;
mrs_real dy;
mrs_real adj;
mrs_real std_ = getctrl("mrs_real/std_factor_init")->to<mrs_real>();
neigh_std_ = ((0.5*(grid_width_+grid_height_)) * std_);
for (t=0; t < inSamples_; t++)
{
// no need to find grid locations, just read from the file
px = (int) in( in.getRows() - 2, t);
py = (int) in( in.getRows() - 1, t);
for(int i =0; i < inObservations_ - 3; ++i)
{
grid_map(px * grid_height_ + py, i) = in(i);
}
for (int x=0; x < grid_width_; x++)
for (int y=0; y < grid_height_; y++)
{
dx = px-x;
dy = py-y;
geom_dist = sqrt((double)(dx*dx + dy*dy));
geom_dist_gauss = gaussian( geom_dist, 0.0, neigh_std_, false);
// subtract map vector from training data vector
adj = alpha_ * geom_dist_gauss;
for (o=0; o < inObservations_-3; o++)
{
adjustments_(o) = in(o,t) - grid_map(x * grid_height_ + y, o);
adjustments_(o) *= adj;
//.........这里部分代码省略.........
示例3: MRSASSERT
void
GMMClassifier::myProcess(realvec& in, realvec& out)
{
mrs_string mode = ctrl_mode_->to<mrs_string>();
// reset
if ((prev_mode_ == "predict") && (mode == "train"))
{
//just drop all accumulated feature vectors and
//copy take the new ones from the input
trainMatrix_ = in;
}
if (mode == "train")
{
MRSASSERT(trainMatrix_.getRows() == inObservations_);
//stretch to acommodate input feat Vecs
mrs_natural storedFeatVecs = trainMatrix_.getCols();
trainMatrix_.stretch(inObservations_, storedFeatVecs + inSamples_);
//append input data
for(mrs_natural c=0; c < inSamples_; ++c)
for(mrs_natural r = 0; r < inObservations_; ++r)
trainMatrix_(r, c+storedFeatVecs) = in(r,c);
}
if (mode == "predict")
{
mrs_real maxProb = 0.0;
mrs_natural maxClass = 0;
mrs_real prob;
mrs_real dist;
realvec vec;
realvec means;
realvec covars;
MRSASSERT(trainMatrix_.getRows() == inObservations_);
for(mrs_natural t=0; t < inSamples_; ++t)
{
in.getCol(t, vec);
for (mrs_natural cl=0; cl < classSize_; cl++)
{
for (mrs_natural k=0; k < nMixtures_; k++)
{
means_[cl].getCol(k, means);
covars_[cl].getCol(k, covars);
dist = NumericLib::mahalanobisDistance(vec, means, covars);
likelihoods_(cl,k) = weights_[cl](k) / dist;
}
prob = 0.0;
for (mrs_natural k=0; k < nMixtures_; k++)
{
prob += likelihoods_(cl,k);
}
if (prob > maxProb)
{
maxProb = prob;
maxClass = cl;
}
}
out(0,t) = in(labelRow_, t);
out(1,t) = (mrs_real)maxClass; //FIXME: what about he maxProb (i.e. Confidence)?
}
}
prev_mode_ = mode;
}
示例4: if
void
ADRessSpectrum::myProcess(realvec& in, realvec& out)
{
mrs_natural t;
out.setval(0.0);
//output spectrum of the "selected" source, given d and H
mrs_natural H = (mrs_natural)(beta_* ctrl_H_->to<mrs_natural>());
if(H < 0)
{
H = 0;
ctrl_H_->setValue(0.0);
}
if(H > beta_)
{
H = beta_;
ctrl_H_->setValue(1.0);
}
mrs_natural H2 = H/2;
mrs_natural d = (mrs_natural)(beta_*ctrl_d_->to<mrs_real>());
if(d < 0)
{
d = 0;
ctrl_d_->setValue(0.0);
}
if(d > beta_)
{
d = beta_;
ctrl_d_->setValue(1.0);
}
mrs_real mag = 0;
mrs_real phase = 0;
mrs_real azim = 0;
for(mrs_natural k=0; k < N2_; ++k)
{
//get magnitude, phase and azimuth of bin k from input
mag = 0.0;
for(t=0; t <= beta_; ++t)
{
//search for non-zero values in azimuth plane
azim = -1;
if(in(k,t+1) > 0.0)
{
azim = t;
mag = in(k,t+1);
phase = in(k, 0);
break;
}
if(in(k+N2_,t+1) > 0.0)
{
azim = beta_*2-t;
mag = in(k+N2_,t+1);
phase = in(k+N2_, 0);
break;
}
}
if(azim < 0)
{
//no sound at this bin,
//so do not send anything to output
continue;
}
//check if bin is inside specified range,
//otherwise, send nothing to output
if(abs(d-azim) <= H2)
{
//convert back to rectangular form
re_ = mag*cos(phase);
im_ = mag*sin(phase);
//write bin to output
if (k==0)
{
out(0,0) = re_; //DC
}
else if (k == N2_-1)
{
out(1, 0) = re_; //Nyquist
}
else
{
out(2*k, 0) = re_; //all other bins
out(2*k+1, 0) = im_;
}
}
}
}
示例5: pkViewOut
void
PeakConvert::myProcess(realvec& in, realvec& out)
{
mrs_natural o;
mrs_real a, c;
mrs_real b, d;
mrs_real phasediff;
out.setval(0);
peakView pkViewOut(out);
for(mrs_natural f=0 ; f < inSamples_; ++f)
{
//we should avoid the first empty frames,
//that will contain silence and consequently create
//discontinuities in the signal, ruining the peak calculation!
//only process if we have a full data vector (i.e. no zeros)
if(frame_ >= skip_)
{
// handle amplitudes from shifted spectrums at input
for (o=0; o < size_; o++)
{
if (o==0) //DC bins
{
a = in(0,f);
b = 0.0;
c = in(N_, f);
d = 0.0;
}
else if (o == size_-1) //Nyquist bins
{
a = in(1, f);
b = 0.0;
c = in(N_+1, f);
d = 0.0;
}
else //all other bins
{
a = in(2*o, f);
b = in(2*o+1, f);
c = in(N_+2*o, f);
d = in(N_+2*o+1, f);
}
// computer magnitude value
//mrs_real par = lobe_value_compute (0, 1, 2048); //[?]
// compute phase
phase_(o) = atan2(b,a);
// compute precise frequency using the phase difference
lastphase_(o)= atan2(d,c);
if(phase_(o) >= lastphase_(o))
phasediff = phase_(o)-lastphase_(o);
else
phasediff = phase_(o)-lastphase_(o)+TWOPI;
if(prec_)
frequency_(o) = phasediff * factor_ ;
else
frequency_(o) = o*fundamental_;
// compute precise amplitude
mag_(o) = sqrt((a*a + b*b))*2; //*4/0.884624;//*50/3); // [!]
mrs_real mag = lobe_value_compute((o * fundamental_-frequency_(o))/factor_, 1, N_);
magCorr_(o) = mag_(o)/mag;
// computing precise frequency using the derivative method // use at your own risk [?]
/* mrs_real lastmag = sqrt(c*c + d*d);
mrs_real rap = (mag_(o)-lastmag)/(lastmag*2);
f=asin(rap);
f *= (getctrl("mrs_real/israte")->to<mrs_real>()*inObservations/2.0)/PI;
*/
// rough frequency and amplitude
//frequency_(o) = o * fundamental_;
//magCorr_(o) = mag_(o);
if(lastfrequency_(o) != 0.0)
deltafrequency_(o) = (frequency_(o)-lastfrequency_(o))/(frequency_(o)+lastfrequency_(o));
deltamag_(o) = (mag_(o)-lastmag_(o))/(mag_(o)+lastmag_(o));
// remove potential peak if frequency too irrelevant
if(abs(frequency_(o)-o*fundamental_) > 0.5*fundamental_)
frequency_(o)=0.0;
lastfrequency_(o) = frequency_(o);
lastmag_(o) = mag_(o);
}
// select bins with local maxima in magnitude (--> peaks)
realvec peaks_ = mag_;
realvec tmp_;
peaker_->updControl("mrs_real/peakStrength", 0.2);// to be set as a control [!]
peaker_->updControl("mrs_natural/peakStart", downFrequency_); // 0
peaker_->updControl("mrs_natural/peakEnd", upFrequency_); // size_
peaker_->updControl("mrs_natural/inSamples", mag_.getCols());
peaker_->updControl("mrs_natural/inObservations", mag_.getRows());
peaker_->updControl("mrs_natural/onSamples", peaks_.getCols());
peaker_->updControl("mrs_natural/onObservations", peaks_.getRows());
if(pick_)
//.........这里部分代码省略.........
示例6: setctrl
void
BeatHistogram::myProcess(realvec& in, realvec& out)
{
if (reset_)
{
out.setval(0.0);
reset_ = false;
setctrl("mrs_bool/reset", false);
}
//out.setval(0.0);
mrs_natural bin=0;
mrs_real amp;
mrs_real srate = getctrl("mrs_real/israte")->to<mrs_real>();
mrs_natural count = 1;
mrs_natural prev_bin =endBin_-1;
mrs_natural pprev_bin =endBin_-1;
mrs_real sumamp = 0.0;
mrs_real tempo_weight = 0.0;
#ifdef MARSYAS_MATLAB
#ifdef MTLB_DBG_LOG
MATLAB_PUT(in, "acr");
MATLAB_EVAL("figure(1);plot(acr),grid on");
#endif
#endif
for (mrs_natural o=0; o < inObservations_; o++)
{
for (mrs_natural t = 1; t < inSamples_; t++)
{
bin = (mrs_natural)(( (2*srate) * 60.0 * factor_ / (t+1)) + 0.5);
amp = in(o,t);
// optional tempo weight
if (getctrl("mrs_bool/tempoWeighting")->to<mrs_bool>())
{
tempo_weight = 5.0 *
log10((t+1) * 400.0 / (srate * 60.0 * factor_)) *
log10((t+1) * 400.0 / (srate * 60.0 * factor_));
tempo_weight = exp(0.5 * tempo_weight * tempo_weight);
}
else
{
tempo_weight = 1.0;
}
amp = tempo_weight * amp;
if (amp < 0.0)
amp = 0.0;
if ((bin > 40)&&(bin < endBin_))
{
if (prev_bin == bin)
{
sumamp += amp;
count++;
}
else
{
sumamp += amp;
out(o,prev_bin) += ((sumamp / count));
count = 1;
sumamp = 0.0;
}
// linear interpolation of the "not-set" bins...
if (pprev_bin-prev_bin > 1)
{
// prev is x0, pprev is x1
mrs_real x0 = prev_bin;
mrs_real x1 = pprev_bin;
mrs_real y0 = out(o, prev_bin);
mrs_real y1 = out(o, pprev_bin);
for (mrs_natural k = prev_bin+1; k < pprev_bin; k++)
out (o,k) = y0 + (y1-y0)*(k-x0)/(x1-x0);
}
pprev_bin = prev_bin;
prev_bin = bin;
}
}
}
#ifdef MARSYAS_MATLAB
#ifdef MTLB_DBG_LOG
//.........这里部分代码省略.........
示例7: in
void
AutoCorrelation::myProcess(realvec& in, realvec& out)
{
mrs_natural t,o;
k_ = ctrl_magcompress_->to<mrs_real>();
// Copy to output to perform inplace fft and zeropad to double size
scratch_.create(fftSize_); //scratch_ needs to be reset every time
for (o=0; o < inObservations_; o++)
{
for (t=lowSamples_; t < (lowSamples_+numSamples_); t++)
{
scratch_(t-(lowSamples_)) = in(o,t);
}
//zeropad
for(t=(lowSamples_+numSamples_); t < fftSize_; t++)
scratch_(t) = 0.0;
//get pointer to data (THIS BREAKS ENCAPSULATION! FIXME [!])
mrs_real *tmp = scratch_.getData();
//compute forward FFT (of size fftSize_)
myfft_->rfft(tmp, fftSize_/2, FFT_FORWARD); //rfft() takes as second argument half of the desired FFT size (see fft.cpp)
// Special case for zero and Nyquist/2,
// which only have real part
if (k_ == 2.0)
{
re_ = tmp[0];
tmp[0] = re_ * re_;
re_ = tmp[1];
tmp[1] = re_ * re_;
}
else
{
re_ = tmp[0];
re_ = sqrt(re_ * re_);
tmp[0] = pow(re_, k_);
re_ = tmp[1];
re_ = sqrt(re_ * re_);
tmp[1] = pow(re_, k_);
}
// Compress the magnitude spectrum and zero
// the imaginary part.
for (t=1; t < fftSize_/2; t++)
{
re_ = tmp[2*t];
im_ = tmp[2*t+1];
if (k_ == 2.0)
am_ = re_ * re_ + im_ * im_;
else
{
am_ = sqrt(re_ * re_ + im_ * im_);
am_ = pow(am_, k_);
}
tmp[2*t] = am_;
tmp[2*t+1] = 0;
}
// Take the inverse Fourier Transform (of size fftSize_)
myfft_->rfft(tmp, fftSize_/2, FFT_INVERSE);
// Copy result to output
if(normalize_)
{
cout << "NORM Normalization happening" << endl;
for (t=0; t < onSamples_; t++)
{
out(o,t) = scratch_(t)*norm_(t);
}
}
else
for (t=0; t < onSamples_; t++)
{
// out(o,t) = 0.1 * scratch_(t) + 0.99 * out(o,t);
out(o,t) = 1.0 * scratch_(t) + 0.0 * out(o,t);
// out(o,t) = 0.5 * scratch_(t) + 0.5 * out(o,t);
// out(o,t) += scratch_(t);
}
}
if (ctrl_makePositive_->to<mrs_bool>())
{
out -= out.minval();
//.........这里部分代码省略.........
示例8: tmpPeakView
mrs_real
McAulayQuatieri::peakTrack(realvec& vec, mrs_natural frame, mrs_natural grpOne, mrs_natural grpTwo)
{
mrs_real dist;
mrs_natural candidate;
mrs_natural lastMatched = -1;
mrs_natural matchedTracks = 0;
mrs_real delta = ctrl_delta_->to<mrs_real>();
if(frame+1 >= vec.getCols())
{
MRSERR("McAulayQuatieri::peakTrack - frame index is bigger than the input vector!");
return -1.0;
}
peakView tmpPeakView(vec);
//get the trackID for any future track to be born (in STEP 3 - see below)
mrs_natural nextTrack = tmpPeakView.getFrameNumPeaks(0, grpOne);
//iterate over peaks in current frame
for(mrs_natural n = 0; n < tmpPeakView.getFrameNumPeaks(frame, grpOne); ++n)
{
mrs_real lastdist = MAXREAL;
candidate = -1;
// STEP 1
// find a candidate match on the next frame for each peak (i.e. track) in current frame
for(mrs_natural m = lastMatched + 1; m < tmpPeakView.getFrameNumPeaks(frame+1, grpTwo); ++m)
{
//set track parameter of all peaks of next frame to -1 so we know later
//which ones were not matched (=> BIRTH of new tracks)
tmpPeakView(m, peakView::pkTrack, frame+1, grpTwo) = -1.0;
dist = abs(tmpPeakView(n, peakView::pkFrequency, frame, grpOne) - tmpPeakView(m, peakView::pkFrequency, frame+1, grpTwo));
if (dist < delta && dist < lastdist)
{
//found a candidate!
lastdist = dist;
candidate = m;
}
}
// STEP 2
// must confirm candidate (if any)
if(candidate >= 0) //check if a candidate was found
{
//confirm if this is not the last peak in current frame
if(n < tmpPeakView.getFrameNumPeaks(frame, grpOne)-1)
{
//check the next remaining peak in current frame and see if it is a better match for the found candidate
dist = abs(tmpPeakView(n+1, peakView::pkFrequency, frame, grpOne) - tmpPeakView(candidate, peakView::pkFrequency, frame+1, grpTwo));
if(dist < lastdist)
{
// it is a better match! Check two additional conditions:
// 1. an unmatched lower freq candidate should exist
// 2. it is inside the frequency interval specified by delta
if(candidate - 1 > lastMatched)
{
if(abs(tmpPeakView(n, peakView::pkFrequency, frame, grpOne) - tmpPeakView(candidate-1, peakView::pkFrequency, frame+1, grpTwo)) < delta)
{
//found a peak to continue the track -> confirm candidate!
tmpPeakView(candidate-1, peakView::pkTrack, frame+1, grpTwo) = tmpPeakView(n, peakView::pkTrack, frame, grpOne);
lastMatched = candidate-1;
matchedTracks++;
}
}
}
else
{
//no better match than this one, so confirm candidate!
tmpPeakView(candidate, peakView::pkTrack, frame+1, grpTwo) = tmpPeakView(n, peakView::pkTrack, frame, grpOne);
lastMatched = candidate;
matchedTracks++;
}
}
else
{
//if this was the last peak in current frame, so inherently it was the best match.
//Candidate is therefore automatically confirmed and can be propagated.
tmpPeakView(candidate, peakView::pkTrack, frame+1, grpTwo) = tmpPeakView(n, peakView::pkTrack, frame, grpOne);
lastMatched = candidate;
matchedTracks++;
}
}
} //end of loop on peaks of current frame
// STEP 3
// check for any unmatched peaks in the next frame and give BIRTH to new tracks!
for(mrs_natural m = 0; m < tmpPeakView.getFrameNumPeaks(frame+1, grpTwo); ++m)
{
if(tmpPeakView(m, peakView::pkTrack, frame+1, grpTwo) == -1.0)
tmpPeakView(m, peakView::pkTrack, frame+1, grpTwo) = nextTrack++; //BIRTH of new track
}
return matchedTracks;
}
示例9: if
void
Filter::myProcess(realvec& in, realvec& out)
{
//checkFlow(in,out);
mrs_natural i,j,c;
mrs_natural size = in.getCols();
mrs_natural stateSize = state_.getCols();
mrs_natural channels = in.getRows();
mrs_real gain = getctrl("mrs_real/fgain")->to<mrs_real>();
// State array holds the various delays for the difference equation
// of the filter. Similar implementation as described in the manual
// for MATLAB Signal Processing Toolbox. State corresponds to
// the z, num_coefs to the b and denom_coefs to the a vector respectively
// in_window is the input x(n) and out_window is the output y(n)
//dcoeffs_/=10;
// state_.setval(0);
if (norder_ == dorder_) {
for (c = 0; c < channels; ++c) {
for (i = 0; i < size; ++i) {
out(c,i) = ncoeffs_(0) * in(c,i) + state_(c,0);
for (j = 0; j < stateSize - 1; j++)
{
state_(c,j) = ncoeffs_(j+1) * in(c,i) + state_(c,j+1) - dcoeffs_(j+1) * out(c,i);
}
state_(c,stateSize - 1) = ncoeffs_(order_-1) * in(c,i) - dcoeffs_(order_-1) * out(c,i);
}
}
}
else if (norder_ < dorder_) {
for (c = 0; c < channels; ++c) {
for (i = 0; i < size; ++i) {
out(c,i) = ncoeffs_(0) * in(c,i) + state_(c,0);
for (j = 0; j < norder_ - 1; j++)
{
state_(c,j) = ncoeffs_(j+1) * in(c,i) + state_(c,j+1) - dcoeffs_(j+1) * out(c,i);
}
for (j = norder_ - 1; j < stateSize - 1; j++)
{
state_(c,j) = state_(c,j+1) - dcoeffs_(j+1) * out(c,i);
}
state_(c,stateSize - 1) = -dcoeffs_(order_ - 1) * out(c,i);
}
}
}
else {
for (c = 0; c < channels; ++c) {
for (i = 0; i < size; ++i) {
out(c,i) = ncoeffs_(0) * in(c,i) + state_(c,0);
for (j = 0; j < dorder_ - 1; j++)
{
state_(c,j) = ncoeffs_(j+1) * in(c,i) + state_(c,j+1) - dcoeffs_(j+1) * out(c,i);
}
for (j = dorder_ - 1; j < stateSize - 1; j++)
{
state_(c,j) = ncoeffs_(j+1) * in(c,i) + state_(c,j+1);
}
state_(c,stateSize - 1) = ncoeffs_(order_-1) * in(c,i);
}
}
}
out *= gain;
// MATLAB_PUT(in, "Filter_in");
// MATLAB_PUT(out, "Filter_out");
// MATLAB_PUT(ncoeffs_, "ncoeffs_");
// MATLAB_PUT(dcoeffs_, "dcoeffs_");
// MATLAB_EVAL("MAT_out = filter(ncoeffs_, dcoeffs_, Filter_in)");
//
// MATLAB_EVAL("spec_in = abs(fft(Filter_in));");
// MATLAB_EVAL("spec_out = abs(fft(Filter_out));");
// MATLAB_EVAL("spec_mat = abs(fft(MAT_out));");
//
// MATLAB_EVAL("subplot(2,1,1);plot(Filter_in);hold on; plot(Filter_out, 'r'); plot(MAT_out, 'g');hold off");
// MATLAB_EVAL("subplot(2,1,2);plot(spec_in(1:end/2));hold on; plot(spec_out(1:end/2),'r');plot(spec_mat(1:end/2),'g');hold off;");
// MATLAB_EVAL("h = abs(fft([1 -.97], length(Filter_in)));");
// MATLAB_EVAL("hold on; plot(h(1:end/2), 'k'); hold off");
// //MATLAB_GET("MAT_out", out)
//
}
示例10: in
void
PeakerOnset::myProcess(realvec& in, realvec& out)
{
mrs_natural o,t;
(void) o;
ctrl_onsetDetected_->setValue(false);
ctrl_confidence_->setValue(0.0);
out.setval(0.0);
mrs_natural w = ctrl_lookAheadSamples_->to<mrs_natural>();
if(w == 0)
return;
//point to check for an onset
mrs_natural checkPoint = inSamples_-1-w;
mrs_real checkPointValue = in(checkPoint);
mrs_bool isOnset = true;
//check first condition
mrs_natural interval = mrs_natural(2.0/3.0*w);
//for (t = inSamples_-1; t >= inSamples_-1-2*w ; t--)
for(t=checkPoint-interval; t <= checkPoint+interval; t++)
{
if(checkPointValue < in(t))
{
isOnset = false;
MRSDIAG("PeakerOnset::myProcess() - Failed 1st condition!");
break;
}
}
// //new check proposed by Fabien Gouyon
// mrs_real ww = w/2;
// mrs_real maxVal = MINREAL;
// for(t = inSamples_-1-ww; t > checkPoint; t--)
// {
// if(in(t) > maxVal)
// {
// maxVal = in(t);
// }
// else
// {
// isOnset = false;
// //cout << "failed 1st condition!" << endl;
// break;
// }
// }
// maxVal = MINREAL;
// for(t = inSamples_-1-2*ww; t < checkPoint; t++)
// {
// if(in(t) > maxVal)
// {
// maxVal = in(t);
// }
// else
// {
// isOnset = false;
// //cout << "failed 1st condition!" << endl;
// break;
// }
// }
/* Last version (by lgmartins) -> corrected (below) for not being strict to the window size defined by the precede ShiftInput
//check second condition
mrs_real m = 0.0;
for(t=0; t < inSamples_; t++)
m += in(t);
m /= inSamples_;
*/
mrs_natural mul = 3; //multiplier proposed in Dixon2006
mrs_real m = 0.0;
for(t=checkPoint-(mul*w); t < inSamples_; t++)
m += in(t);
m /= (w*4+1);
//checkPoint value should be higher than the window mean and mean should
//be a significant value (otherwise we most probably are in a silence segment,
//and we do not want to detect onsets on segments!)
if(checkPointValue <= (m * ctrl_threshold_->to<mrs_real>()) || m < 10e-20)
{
isOnset = false;
MRSDIAG("PeakerOnset::myProcess() - Failed 2nd condition!");
}
//third condition from Dixon2006 (DAFx paper) is not implemented
//since it was found on that paper that its impact is minimal...
if(isOnset)
{
ctrl_onsetDetected_->setValue(true);
//ctrl_confidence_->setValue(1.0); //[!] must still find a way to output a confidence...
ctrl_confidence_->setValue(checkPointValue/100.0); // ad-hoc value which should still have more meaning than a pure 1.0 vs. 0.0.
out.setval(1.0);
MRSDIAG("PeakerOnset::myProcess() - Onset Detected!");
}
//used for toy_with_onsets.m (DO NOT DELETE! - COMMENT INSTEAD)
//.........这里部分代码省略.........
示例11: out
void
McAulayQuatieri::myProcess(realvec& in, realvec& out)
{
mrs_natural t,o,c;
t=0;
o=0;
c=0;
realvec* outPtr;
out(o,t) = in(o,t); // ??????
//if we want to use memory and we already have data from
//past inputs (i.e. memory is not empty)...
if(ctrl_useMemory_->to<mrs_bool>() && memory_.getSize() != 0)
{
//concatenate memory column vector with current input
//so we can continue peak tracking from previous input
tmp_.stretch(onObservations_, onSamples_+1);
for(o = 0; o < onObservations_; ++o)
tmp_(o, 0) = memory_(o);
for(o = 0; o < onObservations_; ++o)
for(c = 0; c < onSamples_; ++c)
tmp_(o,c+1) = in(o,c);
outPtr = &tmp_;
//attempt matching of groups between the frame in memory
//and the first frame from current input
if(ctrl_useGroups_->to<mrs_bool>())
{
peakView inPV(in);
mrs_realvec inFirstFrame;
in.getCol(0, inFirstFrame);
peakView inFirstFramePV(inFirstFrame);
peakView memPV(memory_);
peakView tmpPV(tmp_);
//mrs_natural numInGroups = inPV.getNumGroups();
mrs_natural numInFirstFrameGroups = inFirstFramePV.getNumGroups();
mrs_natural numMemGroups = memPV.getNumGroups();
//we must update the group numbers of the groups
//in tmp realvec (i.e. [mem|current input])
//so they do not clash with the previous ones
if(nextGroup_ > 0)
for(mrs_natural f=1; f < tmpPV.getNumFrames(); ++f)
for(mrs_natural p = 0; p < tmpPV.getFrameNumPeaks(f); ++p)
tmpPV(p, peakView::pkGroup, f) = tmpPV(p, peakView::pkGroup, f) + nextGroup_;
// Try matching previous groups (in memory from last input)
// with groups in current input
// create a tmp copy of the frame in memory and the first frame
// of current input, so we can do the group matching without
// destroying the input values
realvec frames2Match(inObservations_, 2);
// calculate the matching score for all pairs of groups under matching
realvec matchScores(numInFirstFrameGroups, numMemGroups);
for(mrs_natural mg=0; mg < numMemGroups; ++mg)
{
for(mrs_natural ig = nextGroup_; ig < nextGroup_ + numInFirstFrameGroups; ++ig)
{
//since peakTrack(...) is destructible, we must reset frames2Match everytime... [!]
for(o=0; o<inObservations_; ++o)
for(c=0; c < 2; ++c)
frames2Match(o, c) = tmp_(o, c);
//use McAulay-Quatieri num of successful peak continuations as a score
//for the group matching (may be replaced by some other metric in future)
matchScores(ig-nextGroup_, mg) = peakTrack(frames2Match, 0, ig, mg);
}
}
//Given the matchScores, try to find the optimal assignment
//of the groups coming from previous input (stored in memory)
//and the new groups in the current input
//(using, for e.g. the hungarian method)
realvec assignedGrp(numInFirstFrameGroups);
//convert matchScores to costs
mrs_real maxScore = matchScores.maxval();
for(o=0; o < matchScores.getRows(); ++o)
for(c=0; c < matchScores.getCols(); ++ c)
matchScores(o,c) = maxScore - matchScores(o,c);
NumericLib::hungarianAssignment(matchScores, assignedGrp); //!!!!!!!!!!!!!!! [TODO][!]
// given the assignments, try to propagate the group IDs
// to the groups in the current input
mrs_natural ig;
for(mrs_natural f=1; f < tmpPV.getNumFrames(); ++f)
{
for(mrs_natural p = 0; p < tmpPV.getFrameNumPeaks(f); ++p)
{
//get input group ID (converted to the range [0:...])
ig = (mrs_natural)(tmpPV(p, peakView::pkGroup, f)) - nextGroup_;
if(assignedGrp(ig) > -1) //a match was found for this group (ig)
{
//.........这里部分代码省略.........
示例12: if
void
SelfSimilarityMatrix::myProcess(realvec& in, realvec& out)
{
if(this->getctrl("mrs_natural/mode")->to<mrs_natural>() == SelfSimilarityMatrix::outputDistanceMatrix)
{
//check if there are any elements to process at the input
//(in some cases, they may not exist!) - otherwise, do nothing
//(i.e. output will be zeroed out)
if(inSamples_ > 0)
{
unsigned int child_count = marsystems_.size();
if(child_count == 1)
{
mrs_natural nfeats = in.getRows();
//normalize input features if necessary
if(ctrl_normalize_->to<mrs_string>() == "MinMax")
in.normObsMinMax(); // (x - min)/(max - min)
else if(ctrl_normalize_->to<mrs_string>() == "MeanStd")
in.normObs(); // (x - mean)/std
//calculate the Covariance Matrix from the input, if defined
if(ctrl_calcCovMatrix_->to<mrs_natural>() & SelfSimilarityMatrix::fixedStdDev)
{
//fill covMatrix diagonal with fixed value (remaining values are zero)
MarControlAccessor acc(ctrl_covMatrix_);
realvec& covMatrix = acc.to<mrs_realvec>();
covMatrix.create(inObservations_, inObservations_);
mrs_real var = ctrl_stdDev_->to<mrs_real>();
var *= var;
for(mrs_natural i=0; i< inObservations_; ++i)
{
covMatrix(i,i) = var;
}
}
else if(ctrl_calcCovMatrix_->to<mrs_natural>() & SelfSimilarityMatrix::diagCovMatrix)
{
in.varObs(vars_); //FASTER -> only get the vars for each feature
mrs_natural dim = vars_.getSize();
//fill covMatrix diagonal with var values (remaining values are zero)
MarControlAccessor acc(ctrl_covMatrix_);
realvec& covMatrix = acc.to<mrs_realvec>();
covMatrix.create(dim, dim);
for(mrs_natural i=0; i< dim; ++i)
{
covMatrix(i,i) = vars_(i);
}
}
else if(ctrl_calcCovMatrix_->to<mrs_natural>() & SelfSimilarityMatrix::fullCovMatrix)
{
MarControlAccessor acc(ctrl_covMatrix_);
realvec& covMatrix = acc.to<mrs_realvec>();
in.covariance(covMatrix); //SLOWER -> estimate the full cov matrix
}
else if(ctrl_calcCovMatrix_->to<mrs_natural>() == SelfSimilarityMatrix::noCovMatrix)
{
ctrl_covMatrix_->setValue(realvec());
}
for(mrs_natural i=0; i < in.getCols(); ++i)
{
in.getCol(i, i_featVec_);
for(mrs_natural j=0; j <= i; ++j)
{
in.getCol(j, j_featVec_);
//stack i and j feat vecs
for(mrs_natural r=0; r < nfeats; ++r)
{
stackedFeatVecs_(r, 0) = i_featVec_(r);
stackedFeatVecs_(r+nfeats, 0) = j_featVec_(r);
}
//do the metric calculation for these two feat vectors
//and store it in the similarity matrix (which is symmetric)
marsystems_[0]->process(stackedFeatVecs_, metricResult_);
out(i,j) = metricResult_(0,0);
//metric should be symmetric!
out(j, i) = out(i, j);
}
}
}
else
{
out.setval(0.0);
if(child_count == 0)
{
MRSWARN("SelfSimilarityMatrix::myProcess - no Child Metric MarSystem added - outputting zero similarity matrix!");
}
else
{
MRSWARN("SelfSimilarityMatrix::myProcess - more than one Child MarSystem exists (i.e. invalid metric) - outputting zero similarity matrix!");
}
}
}
//MATLAB_PUT(out, "simMatrix");
//MATLAB_EVAL("figure(1);imagesc(simMatrix);");
//MATLAB_PUT(out, "simMat");
//MATLAB_EVAL(name_+"=["+name_+",simMat(:)'];");
//.........这里部分代码省略.........
示例13: getctrl
void
OneRClassifier::myProcess(realvec& in, realvec& out)
{
cout << "OneRClassifier::myProcess" << endl;
cout << "in.getCols() = " << in.getCols() << endl;
cout << "in.getRows() = " << in.getRows() << endl;
//get the current mode, either train of predict mode
bool trainMode = (getctrl("mrs_string/mode")->to<mrs_string>() == "train");
row_.stretch(in.getRows());
if (trainMode)
{
if(lastModePredict_ || instances_.getCols()<=0)
{
mrs_natural nAttributes = getctrl("mrs_natural/inObservations")->to<mrs_natural>();
cout << "nAttributes = " << nAttributes << endl;
instances_.Create(nAttributes);
}
lastModePredict_ = false;
//get the incoming data and append it to the data table
for (mrs_natural ii=0; ii< inSamples_; ++ii)
{
mrs_real label = in(inObservations_-1, ii);
instances_.Append(in);
out(0,ii) = label;
out(1,ii) = label;
}//for t
}//if
else
{//predict mode
cout << "OneRClassifier::predict" << endl;
if(!lastModePredict_)
{
//get the number of class labels and build the classifier
mrs_natural nAttributes = getctrl("mrs_natural/inObservations")->to<mrs_natural>();
cout << "BUILD nAttributes = " << nAttributes << endl;
Build(nAttributes);
}//if
lastModePredict_ = true;
cout << "After lastModePredict" << endl;
//foreach row of predict data, extract the actual class, then call the
//classifier predict method. Output the actual and predicted classes.
for (mrs_natural ii=0; ii<inSamples_; ++ii)
{
//extract the actual class
mrs_natural label = (mrs_natural)in(inObservations_-1, ii);
//invoke the classifier predict method to predict the class
in.getCol(ii,row_);
mrs_natural prediction = Predict(row_);
cout << "PREDICTION = " << prediction << endl;
cout << "row_ " << row_ << endl;
//and output actual/predicted classes
out(0,ii) = (mrs_real)prediction;
out(1,ii) = (mrs_real)label;
}//for t
}//if
}//myProcess
示例14: myProcess
void PeakInObservation::myProcess(realvec& inVec, realvec& outVec)
{
// (!!) Should be simplified
outVec.setval(0.f);
//int nmin = 0;
mrs_real vmin = inVec(0);
int nmax = 0;
mrs_real vmax = inVec(0);
int nthresh = 0;
bool theValid = true;
bool theMaxFlag = true;
for (mrs_natural n = 1; n < inVec.getSize(); n++){
if (theMaxFlag)
if (inVec(n) > vmax){
// Zone 1: [min hysteresis, max]
vmax = inVec(n);
nmax = n;
nthresh = n;
theValid = true;
vmin = vmax;
//nmin = nmax;
}else{
if (inVec(n)<vmax/HystFactor_ && nmax!=0){
// Zone 3: [max hysteresis, min]
if ((mrs_natural)n > nthresh + HystLength_){
// Maximum was WIDE ENOUGH
if (theValid){
outVec(nmax) = vmax;
theMaxFlag = false;
}else{
//Search for new maximum
vmax = inVec(n);
nmax = n;
nthresh = n;
theValid = true;
vmin = vmax;
//nmin = nmax;
}
}else{
// Maximum was TOO SMALL
if (inVec(n) < vmin){
vmin = inVec(n);
//nmin = n;
}
}
}else{
// Zone 2: [max, max hysteresis]
if (nthresh != (mrs_natural)n-1){
theValid = false;
if ((mrs_natural)n > nthresh + HystLength_){
// Search for new maximum
vmax = inVec(n);
nmax = n;
nthresh = n;
theValid = true;
vmin = vmax;
//nmin = nmax;
}
}else
nthresh = n;
}
}
else
if (inVec(n) < vmin){
vmin = inVec(n);
//nmin = n;
}else
if (inVec(n) > vmin*HystFactor_){
vmax = inVec(n);
nmax = n;
nthresh = 0;
vmin = vmax;
//nmin = nmax;
theValid = true;
theMaxFlag = true;
}
}
}
示例15: in
void
BeatHistoFeatures::beatHistoFeatures(realvec& in, realvec& out)
{
mrs_real sum = 0;
for (mrs_natural o=0; o < inObservations_; o++)
for (mrs_natural t = 0; t < inSamples_; t++)
{
sum += in(o,t);
}
mrs_real result[2];
mrs_natural i,startIdx = 200;
// zero-out below 50BPM
for (i=0; i < startIdx; i++)
in(i) = 0;
for (i = startIdx; i < in.getCols (); i++)
if (in(i) < 0)
in(i) = 0;
pkr1_->process(in, pkres1_);
mxr_->process(pkres1_,mxres_);
vector<mrs_real> bpms;
bpms.push_back(mxres_(0,1));
bpms.push_back(mxres_(0,3));
bpms.push_back(mxres_(0,5));
sort(bpms.begin(), bpms.end());
out(0,0) = sum;
for (unsigned int i=0; i<bpms.size(); i++)
for (unsigned int j =0; j < bpms.size(); j++)
{
if (bpms[i] == mxres_(0,2*j+1))
out(i+1,0) = mxres_(0,2*j);
}
out(4,0) = bpms[0] /4.0;
out(5,0) = bpms[1] /4.0;
out(6,0) = bpms[2] /4.0;
out(7,0) = out(4,0) / out(5,0);
NormInPlace (in);
#ifdef MARSYAS_MATLAB
#ifdef MTLB_DBG_LOG
MATLAB_PUT(in, "beathist");
MATLAB_EVAL("figure(1);plot((201:800)/4, beathist(201:800)),grid on");
#endif
#endif
MaxAcf (result[0], result[1],in, flag_, startIdx, 600);
out(8,0) = result[0];
out(9,0) = result[1];
out(10,0) = MaxHps (in, startIdx);
out(11,0) = SpectralFlatness (in, startIdx);
out(12,0) = Std(in);
out(13,0) = PeriodicCentroid(in, false, startIdx);
out(14,0) = PeriodicCentroid(in, true, startIdx);
out(15,0) = PeriodicSpread(in, out(13,0), false, startIdx);
out(16,0) = PeriodicSpread(in, out(14,0), true, startIdx);
out(17,0) = NumMax(in);
}