本文整理汇总了C++中polynomial类的典型用法代码示例。如果您正苦于以下问题:C++ polynomial类的具体用法?C++ polynomial怎么用?C++ polynomial使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了polynomial类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: div_monomial
static polynomial div_monomial(const polynomial& divident,
const polynomial& divisor) {
int_type degree = divident.degree() - divisor.degree();
int_type coefficient = divident.data.begin()->second
/ divisor.data.begin()->second;
return { {degree, coefficient}};
}
示例2: while
polynomial operator *(const polynomial &p1, const polynomial &p2)
{
polynomial p3;
Iterator<polyterm> poly1, poly2;
Node<polyterm> newTerm;
poly1=p1.Begin();
while(poly1.GetNode()!=NULL)
{
poly2 = p2.Begin();
while(poly2.GetNode()!=NULL)
{
newTerm = *poly1.GetNode()* *poly2.GetNode();
p3.InsertSorted(new Node<polyterm>(newTerm));
poly2.Next();
}
poly1.Next();
}
return p3;
}
示例3: derivative
friend polynomial derivative(polynomial const& p) {
int s = p.size();
if(s == 0) return {};
polynomial res;
res.coeffs.resize(s-1);
for(int n = 0; n < s-1; ++n)
res.coeffs(n) = p.coeffs(n+1) * CoeffType(n+1);
return res;
}
示例4: size
polynomial operator+(const polynomial<T>& o) const
{
int len;
const polynomial<T> *p;
size() >= o.size() ? (p=this, len=size()) : (p=&o, len=o.size());
polynomial<T> out(len);
std::transform(vals->data(),vals->data()+std::min(size(),o.size()),o.vals->data(),out.vals->data(),[](T a, T b){return a+b;});
if (size() != o.size()) std::copy_n(&p->element(std::min(size(),o.size())),abs(size()-o.size()),&out(std::min(size(),o.size())));
return out;
}
示例5: result
const polynomial operator+ (polynomial operand) const {
std::vector<double> result (std::max(degree(), operand.degree()) + 1);
for (int i = 0; i < result.size(); i++) {
double x = i <= degree() ? coefficients[i] : 0.0;
double y = i <= operand.degree() ? operand[i] : 0.0;
result[i] = x + y;
}
return polynomial { result };
}
示例6: antiderivative
friend polynomial antiderivative(polynomial const& p) {
int s = p.size();
if(s == 0) return {};
polynomial res;
res.coeffs.resize(s+1);
res.coeffs(0) = CoeffType{};
for(int n = 1; n < s+1; ++n)
res.coeffs(n) = p.coeffs(n-1) / CoeffType(n);
return res;
}
示例7: printpoly
void printpoly(ostream &dst, const polynomial<num,Nvar,Ndeg> &p)
{
int exps[Nvar] = {0};
for (int i=0; i<p.size; i++)
{
p.exponents(i,exps);
for (int j=0; j<Nvar; j++)
cout << exps[j] << " ";
cout << " " << p[i] << endl;
assert(i == p.term_index(exps));
}
}
示例8: sturm_chain
std::vector<polynomial> sturm_chain (polynomial p) {
std::vector<polynomial> chain (p.degree() + 1);
chain[0] = p;
chain[1] = p.derivative();
for (int i = 2; i < chain.size(); i++) {
chain[i] = -(chain[i-2] % chain[i-1]);
}
return chain;
}
示例9: test_np
void test_np(const polynomial& test)
{
unsigned int exponent;
cout << "Enter exponent: ";
cin >> exponent;
cout << "For polynomial: ";
view(test);
cout << "next_term(" << exponent << ") = "
<< test.next_term(exponent) << endl;
cout << "previous_term(" << exponent << ") = "
<< test.previous_term(exponent) << endl;
}
示例10: quo_rem
std::pair<polynomial, polynomial> quo_rem (polynomial divisor) const {
/* Degrees of the remainder and quotient. */
int kd = divisor.degree();
int kr = kd - 1;
int kq = degree() - kd;
std::vector<double> remainder (kr + 1);
std::vector<double> quotient (kq + 1);
auto dbegin = divisor.coefficients.crbegin() + 1;
auto dend = divisor.coefficients.crend();
auto qbegin = quotient.end();
auto qend = quotient.end();
for (int i = kq; 0 <= i; i--) {
quotient[i] = (coefficients[kd+i] - ip(dbegin, dend, qbegin, qend)) / divisor[kd];
--qbegin;
}
for (int i = kr; 0 <= i; i--) {
remainder[i] = coefficients[i] - ip(dbegin, dend, qbegin, qend);
++dbegin;
}
return { polynomial { quotient }, polynomial { remainder } };
}
示例11: while
void polynomial::div_and_mod(const polynomial &p,
polynomial &result, polynomial &remainder) const {
remainder = *this;
while (!remainder.islower(p)) {
double coe = remainder.beg->coe / p.beg->coe;
double exp = remainder.beg->exp - p.beg->exp;
if (coe == 0) break;
polynomial ans;
ans.append(coe, exp);
result.append(coe, exp);
remainder = remainder.minus(ans.multiply(p));
}
}
示例12: sturm_functions
void sturm_functions(std::vector< polynomial<data__> > &sturm_fun, const polynomial<data__> &f)
{
size_t i, n;
// resize the Sturm function vector
n=f.degree()+1;
sturm_fun.resize(n);
polynomial<data__> *ptemp(f.fp()), pjunk;
// initialize the Sturm functions
sturm_fun[0]=f;
ptemp=f.fp();
sturm_fun[1]=*ptemp;
delete ptemp;
// build the Sturm functions
sturm_fun[0].divide(std::abs(sturm_fun[0].coefficient(sturm_fun[0].degree())));
sturm_fun[1].divide(std::abs(sturm_fun[1].coefficient(sturm_fun[1].degree())));
for (i=2; i<n; ++i)
{
if (sturm_fun[i-1].degree()>0)
{
data__ small_no, max_c(0);
typename polynomial<data__>::coefficient_type c;
sturm_fun[i-1].get_coefficients(c);
for (typename polynomial<data__>::index_type j=0; j<=sturm_fun[i-1].degree(); ++j)
{
if (std::abs(c(j))>max_c)
max_c=std::abs(c(j));
}
small_no=max_c*std::sqrt(std::numeric_limits<data__>::epsilon());
pjunk.divide(sturm_fun[i], sturm_fun[i-2], sturm_fun[i-1]);
sturm_fun[i].negative();
if (std::abs(sturm_fun[i].coefficient(sturm_fun[i].degree()))>small_no)
sturm_fun[i].divide(std::abs(sturm_fun[i].coefficient(sturm_fun[i].degree())));
sturm_fun[i].adjust_zero(small_no);
}
else
{
sturm_fun[i]=0;
}
}
}
示例13: find_kernels
void find_kernels(const polynomial& P, vector<pair<monomial, polynomial>>& kernelmap)
{
kernelmap.clear();
kernels(0, P, monomial(), kernelmap);
if (P.gcd() == monomial())
{
kernelmap.push_back(make_pair(monomial(), P));
}
}
示例14: descartes_rule
int descartes_rule(const polynomial<data__> &f, bool positive)
{
// catch special case
if (f.degree()==0)
return 0;
// get the coefficients from the polynomial
std::vector<data__> a(f.degree()+1);
for (size_t i=0; i<a.size(); ++i)
{
a[i]=f.coefficient(i);
// change the sign of odd powers if want the negative root count
if (!positive && i%2==1)
a[i]*=-1;
}
return eli::mutil::poly::root::sign_changes(a.begin(), a.end());
}
示例15: ans
polynomial operator + (const polynomial &p, const polynomial &q) {
polynomial::const_iterator itP, itQ;
polynomial C;
itP = p.begin();
itQ = q.begin();
while(itP != p.end() && itQ != q.end()) {
if ((*itP).second == (*itQ).second) {
term ans(((*itP).first + (*itQ).first), (*itQ).second);
if (((*itP).first + (*itQ).first) != 0)
C.push_back(ans);
itP++;
itQ++;
} else if ((*itP).second < (*itQ).second) {
C.push_back(*itQ);
itQ++;
} else {
C.push_back(*itP);
itP++;
}
}
while (itP != p.end()) {
C.push_back(*itP);
itP++;
}
while (itQ != q.end()) {
C.push_back(*itQ);
itQ++;
}
return C;
}