当前位置: 首页>>代码示例>>C++>>正文


C++ orthotope::hypercube方法代码示例

本文整理汇总了C++中orthotope::hypercube方法的典型用法代码示例。如果您正苦于以下问题:C++ orthotope::hypercube方法的具体用法?C++ orthotope::hypercube怎么用?C++ orthotope::hypercube使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在orthotope的用法示例。


在下文中一共展示了orthotope::hypercube方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: check_QR

void check_QR(
    orthotope<T> const& A
  , orthotope<T> const& Q
  , orthotope<T> const& R
    )
{ // {{{
    BOOST_ASSERT(2 == A.order());
    BOOST_ASSERT(2 == Q.order());
    BOOST_ASSERT(2 == R.order());
    BOOST_ASSERT(A.hypercube());
    BOOST_ASSERT(Q.hypercube());
    BOOST_ASSERT(R.hypercube());

    std::size_t const n = A.extent(0);

    BOOST_ASSERT(n == Q.extent(0));
    BOOST_ASSERT(n == R.extent(0));

    ///////////////////////////////////////////////////////////////////////////
    /// Make sure Q * R equals A.
    orthotope<T> QR = matrix_multiply(Q, R);

    for (std::size_t l = 0; l < n; ++l)
    {
        for (std::size_t i = 0; i < n; ++i)
        {
            if (!compare_floating(A(l, i), QR(l, i), 1e-6)) 
                std::cout << "WARNING: QR[" << l << "][" << i << "] (value "
                          << QR(l, i) << ") is not equal to A[" << l << "]["
                          << i << "] (value " << A(l, i) << ")\n";
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    /// Make sure R is an upper triangular matrix. 
    for (std::size_t l = 0; l < (n - 1); ++l)
    {
        for (std::size_t i = l + 1; i < n; ++i)
        {
            if (!compare_floating(0.0, R(i, l), 1e-6))
                std::cout << "WARNING: R[" << i << "][" << l << "] is not 0 "
                             "(value is " << R(i, l) << "), R is not an upper "
                             "triangular matrix\n";
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    /// Make sure Q is orthogonal. A matrix is orthogonal if its transpose is
    /// equal to its inverse:
    ///
    ///     Q^T = Q^-1
    ///
    /// This implies that:
    ///
    ///     Q^T * Q = Q * Q^T = I
    /// 
    /// We use the above formula to verify Q's orthogonality. 
    orthotope<T> QT = Q.copy();

    // Transpose QT.
    for (std::size_t l = 0; l < (n - 1); ++l)
        for (std::size_t i = l + 1; i < n; ++i)
            std::swap(QT(l, i), QT(i, l));

    // Compute Q^T * Q and store the result in QT.
    QT = matrix_multiply(Q, QT);

    for (std::size_t l = 0; l < n; ++l)
    {
        for (std::size_t i = 0; i < n; ++i)
        {
            // Diagonals should be 1. 
            if (l == i)
            {
                if (!compare_floating(1.0, QT(l, i), 1e-6)) 
                    std::cout << "WARNING: (Q^T * Q)[" << l << "][" << i << "] "
                                 "is not 1 (value is " << QT(l, i) << "), Q is "
                                 "not an orthogonal matrix\n";
            }

            // All other entries should be 0.
            else
            {
                if (!compare_floating(0.0, QT(l, i), 1e-6)) 
                    std::cout << "WARNING: (Q^T * Q)[" << l << "][" << i << "] "
                                 "is not 0 (value is " << QT(l, i) << "), Q is "
                                 "not an orthogonal matrix\n";
            }
        }
    }
} // }}}
开发者ID:fpelliccioni,项目名称:hpx,代码行数:91,代码来源:householder_qr_factorization.cpp

示例2: householders

void householders(
    orthotope<T> const& A
    )
{
    BOOST_ASSERT(2 == A.order());
    BOOST_ASSERT(A.hypercube());

    std::size_t const n = A.extent(0);

    orthotope<T> R = A.copy();
    orthotope<T> Q({n, n});

    for (std::size_t l = 0; l < n; ++l)
        Q(l, l) = 1.0;

    for (std::size_t l = 0; l < (n - 1); ++l)
    {
        T const sigma = compute_sigma(R, n, l);
        boost::int16_t const sign = compute_sign(R(l, l));

        #if defined(HPXLA_DEBUG_HOUSEHOLDERS)
            std::cout << (std::string(80, '#') + "\n")
                      << "ROUND " << l << "\n\n";

            print(sigma, "sigma");
            print(sign, "sign");
        #endif

        orthotope<T> w({n});

        w(l) = R(l, l) + sign * sigma;
 
        for (std::size_t i = (l + 1); i < w.extent(0); ++i)
            w(i) = R(i, l);

        #if defined(HPXLA_DEBUG_HOUSEHOLDERS)
            print(w, "u");
        #endif

        T const w_norm = euclidean_norm(w);

        for (std::size_t i = l; i < n; ++i)
            w(i) /= w_norm;

        #if defined(HPXLA_DEBUG_HOUSEHOLDERS)
            print(w, "v");
        #endif

        orthotope<T> H = compute_H(w);

        #if defined(HPXLA_DEBUG_HOUSEHOLDERS)
            print(H, "H");
        #endif

        R = matrix_multiply(H, R);

        Q = matrix_multiply(Q, H);

        for (std::size_t i = l + 1; i < n; ++i)
            R(i, l) = 0;
    }

    #if defined(HPXLA_DEBUG_HOUSEHOLDERS)
        std::cout << std::string(80, '#') << "\n";
    #endif

    print(A, "A");
    print(Q, "Q");
    print(R, "R");

    #if defined(HPXLA_DEBUG_HOUSEHOLDERS)
        check_QR(A, Q, R);
    #endif
}
开发者ID:fpelliccioni,项目名称:hpx,代码行数:74,代码来源:householder_qr_factorization.cpp

示例3: evs

std::vector<std::complex<T> > qr_eigenvalue(
    orthotope<T> const& A
  , std::size_t max_iterations
  , std::size_t block_size 
  , T const& tolerance = 1.0
    )
{
    BOOST_ASSERT(2 == A.order());
    BOOST_ASSERT(A.hypercube());

    std::size_t const n = A.extent(0); 

/*
    std::vector<std::complex<T> > evs;
    evs.reserve(n);
*/

    std::complex<T> const nan_(std::numeric_limits<T>::quiet_NaN()
                             , std::numeric_limits<T>::quiet_NaN());

    std::vector<std::complex<T> > evs(n, nan_), old(n, nan_);

    orthotope<T> Ak = A.copy(), R, Q;

    householders_tri_factor(Ak, block_size);

    write_matrix_to_octave_file(Ak, "hess_A0");

    std::size_t iterations = 0;

    while (true)
    {
/*
        T const mu = Ak(n, n);

        if (0 != iterations)
        {
            for (std::size_t i = 0; i < (n - 1); ++i)
                Ak(i, i) -= mu;

            Ak(n, n) = 0.0;
        }
*/

        householders_qr_factor(Ak, Q, R, block_size);

        Ak = blocked_matrix_multiply(R, Q, block_size); 

/*
        if (0 != iterations)
            for (std::size_t i = 0; i < n; ++i)
                Ak(i, i) += mu;
*/

/*
        bool pseudo_upper_triangular = true;

        for (std::size_t j = 0; j < (n - 1); ++j)
        {
            // Make sure we're in Hessenberg form.
            for (std::size_t i = j + 2; i < n; ++i)
            {
                if (!compare_floating(0.0, Ak(i, j), 1e-6))
                    pseudo_upper_triangular = false;
            }

            /// Check for convergence. Either we converge to 2x2 complex
            /// conjugates eigenvalues, which take the form:
            ///
            ///     [ a  b ]
            ///     [ c  a ]
            ///
            /// Where b * c < 0. Or, we converge to real eigenvalues which take
            /// the form:
            ///
            ///     [ a ]
            ///     [ 0 ]
            ///

            // Determine if we've failed to converge to a real eigenvalue. 
            if (!compare_floating(0.0, Ak(j, j + 1), 1e-6))
            {
                // Determine if we've failed to converge to a pair of complex
                // eigenvalues.
                if (!compare_floating(Ak(j, j), Ak(j + 1, j + 1), 1e-6))
                    pseudo_upper_triangular = false;
            }
        }
*/

        bool converged = true;

//        std::cout << "ITERATION " << iterations << "\n";

        for (std::size_t j = 0; j < n; ++j)
        {
            if (j != n)
            {
                // Check for complex eigenvalues.
                if (!compare_floating(0.0, Ak(j + 1, j), 1e-6))
//.........这里部分代码省略.........
开发者ID:STEllAR-GROUP,项目名称:hpx_historic,代码行数:101,代码来源:explicit_qr_algorithm.cpp


注:本文中的orthotope::hypercube方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。