本文整理汇总了C++中methodHandle类的典型用法代码示例。如果您正苦于以下问题:C++ methodHandle类的具体用法?C++ methodHandle怎么用?C++ methodHandle使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了methodHandle类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: stream
// Initialize the MethodData* corresponding to a given method.
MethodData::MethodData(methodHandle method, int size, TRAPS) {
No_Safepoint_Verifier no_safepoint; // init function atomic wrt GC
ResourceMark rm;
// Set the method back-pointer.
_method = method();
if (TieredCompilation) {
_invocation_counter.init();
_backedge_counter.init();
_invocation_counter_start = 0;
_backedge_counter_start = 0;
_num_loops = 0;
_num_blocks = 0;
_highest_comp_level = 0;
_highest_osr_comp_level = 0;
_would_profile = true;
}
set_creation_mileage(mileage_of(method()));
// Initialize flags and trap history.
_nof_decompiles = 0;
_nof_overflow_recompiles = 0;
_nof_overflow_traps = 0;
assert(sizeof(_trap_hist) % sizeof(HeapWord) == 0, "align");
Copy::zero_to_words((HeapWord*) &_trap_hist,
sizeof(_trap_hist) / sizeof(HeapWord));
// Go through the bytecodes and allocate and initialize the
// corresponding data cells.
int data_size = 0;
int empty_bc_count = 0; // number of bytecodes lacking data
BytecodeStream stream(method);
Bytecodes::Code c;
while ((c = stream.next()) >= 0) {
int size_in_bytes = initialize_data(&stream, data_size);
data_size += size_in_bytes;
if (size_in_bytes == 0) empty_bc_count += 1;
}
_data_size = data_size;
int object_size = in_bytes(data_offset()) + data_size;
// Add some extra DataLayout cells (at least one) to track stray traps.
int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
int extra_size = extra_data_count * DataLayout::compute_size_in_bytes(0);
// Add a cell to record information about modified arguments.
// Set up _args_modified array after traps cells so that
// the code for traps cells works.
DataLayout *dp = data_layout_at(data_size + extra_size);
int arg_size = method->size_of_parameters();
dp->initialize(DataLayout::arg_info_data_tag, 0, arg_size+1);
object_size += extra_size + DataLayout::compute_size_in_bytes(arg_size+1);
// Set an initial hint. Don't use set_hint_di() because
// first_di() may be out of bounds if data_size is 0.
// In that situation, _hint_di is never used, but at
// least well-defined.
_hint_di = first_di();
post_initialize(&stream);
set_size(object_size);
}
示例2: print_event
// Print an event.
void SimpleThresholdPolicy::print_event(EventType type, methodHandle mh, methodHandle imh,
int bci, CompLevel level) {
bool inlinee_event = mh() != imh();
ttyLocker tty_lock;
tty->print("%lf: [", os::elapsedTime());
switch(type) {
case CALL:
tty->print("call");
break;
case LOOP:
tty->print("loop");
break;
case COMPILE:
tty->print("compile");
break;
case REMOVE_FROM_QUEUE:
tty->print("remove-from-queue");
break;
case UPDATE_IN_QUEUE:
tty->print("update-in-queue");
break;
case REPROFILE:
tty->print("reprofile");
break;
case MAKE_NOT_ENTRANT:
tty->print("make-not-entrant");
break;
default:
tty->print("unknown");
}
tty->print(" level=%d ", level);
ResourceMark rm;
char *method_name = mh->name_and_sig_as_C_string();
tty->print("[%s", method_name);
if (inlinee_event) {
char *inlinee_name = imh->name_and_sig_as_C_string();
tty->print(" [%s]] ", inlinee_name);
}
else tty->print("] ");
tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
CompileBroker::queue_size(CompLevel_full_optimization));
print_specific(type, mh, imh, bci, level);
if (type != COMPILE) {
print_counters("", mh);
if (inlinee_event) {
print_counters("inlinee ", imh);
}
tty->print(" compilable=");
bool need_comma = false;
if (!mh->is_not_compilable(CompLevel_full_profile)) {
tty->print("c1");
need_comma = true;
}
if (!mh->is_not_osr_compilable(CompLevel_full_profile)) {
if (need_comma) tty->print(",");
tty->print("c1-osr");
need_comma = true;
}
if (!mh->is_not_compilable(CompLevel_full_optimization)) {
if (need_comma) tty->print(",");
tty->print("c2");
need_comma = true;
}
if (!mh->is_not_osr_compilable(CompLevel_full_optimization)) {
if (need_comma) tty->print(",");
tty->print("c2-osr");
}
tty->print(" status=");
if (mh->queued_for_compilation()) {
tty->print("in-queue");
} else tty->print("idle");
}
tty->print_cr("]");
}
示例3: BaseBytecodeStream
// Construction
BaseBytecodeStream(methodHandle method) : _method(method) {
set_interval(0, _method->code_size());
_is_raw = false;
}
示例4: Scope
CompilationScope::CompilationScope(methodHandle method, Scope* caller, int callerBCI) : Scope(method, caller, callerBCI) {
assert(!method->is_abstract(), "cannot generate code for abstract method");
assert(!method->is_native(), "no scopes for native methods");
}
示例5: submit_compile
// Tell the broker to compile the method
void SimpleThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
}
示例6: assert
void ConstantPoolCacheEntry::set_method_handle_common(const constantPoolHandle& cpool,
Bytecodes::Code invoke_code,
const CallInfo &call_info) {
// NOTE: This CPCE can be the subject of data races.
// There are three words to update: flags, refs[f2], f1 (in that order).
// Writers must store all other values before f1.
// Readers must test f1 first for non-null before reading other fields.
// Competing writers must acquire exclusive access via a lock.
// A losing writer waits on the lock until the winner writes f1 and leaves
// the lock, so that when the losing writer returns, he can use the linked
// cache entry.
objArrayHandle resolved_references = cpool->resolved_references();
// Use the resolved_references() lock for this cpCache entry.
// resolved_references are created for all classes with Invokedynamic, MethodHandle
// or MethodType constant pool cache entries.
assert(resolved_references() != NULL,
"a resolved_references array should have been created for this class");
ObjectLocker ol(resolved_references, Thread::current());
if (!is_f1_null()) {
return;
}
const methodHandle adapter = call_info.resolved_method();
const Handle appendix = call_info.resolved_appendix();
const Handle method_type = call_info.resolved_method_type();
const bool has_appendix = appendix.not_null();
const bool has_method_type = method_type.not_null();
// Write the flags.
set_method_flags(as_TosState(adapter->result_type()),
((has_appendix ? 1 : 0) << has_appendix_shift ) |
((has_method_type ? 1 : 0) << has_method_type_shift) |
( 1 << is_final_shift ),
adapter->size_of_parameters());
if (TraceInvokeDynamic) {
ttyLocker ttyl;
tty->print_cr("set_method_handle bc=%d appendix=" PTR_FORMAT "%s method_type=" PTR_FORMAT "%s method=" PTR_FORMAT " ",
invoke_code,
p2i(appendix()), (has_appendix ? "" : " (unused)"),
p2i(method_type()), (has_method_type ? "" : " (unused)"),
p2i(adapter()));
adapter->print();
if (has_appendix) appendix()->print();
}
// Method handle invokes and invokedynamic sites use both cp cache words.
// refs[f2], if not null, contains a value passed as a trailing argument to the adapter.
// In the general case, this could be the call site's MethodType,
// for use with java.lang.Invokers.checkExactType, or else a CallSite object.
// f1 contains the adapter method which manages the actual call.
// In the general case, this is a compiled LambdaForm.
// (The Java code is free to optimize these calls by binding other
// sorts of methods and appendices to call sites.)
// JVM-level linking is via f1, as if for invokespecial, and signatures are erased.
// The appendix argument (if any) is added to the signature, and is counted in the parameter_size bits.
// Even with the appendix, the method will never take more than 255 parameter slots.
//
// This means that given a call site like (List)mh.invoke("foo"),
// the f1 method has signature '(Ljl/Object;Ljl/invoke/MethodType;)Ljl/Object;',
// not '(Ljava/lang/String;)Ljava/util/List;'.
// The fact that String and List are involved is encoded in the MethodType in refs[f2].
// This allows us to create fewer Methods, while keeping type safety.
//
// Store appendix, if any.
if (has_appendix) {
const int appendix_index = f2_as_index() + _indy_resolved_references_appendix_offset;
assert(appendix_index >= 0 && appendix_index < resolved_references->length(), "oob");
assert(resolved_references->obj_at(appendix_index) == NULL, "init just once");
resolved_references->obj_at_put(appendix_index, appendix());
}
// Store MethodType, if any.
if (has_method_type) {
const int method_type_index = f2_as_index() + _indy_resolved_references_method_type_offset;
assert(method_type_index >= 0 && method_type_index < resolved_references->length(), "oob");
assert(resolved_references->obj_at(method_type_index) == NULL, "init just once");
resolved_references->obj_at_put(method_type_index, method_type());
}
release_set_f1(adapter()); // This must be the last one to set (see NOTE above)!
// The interpreter assembly code does not check byte_2,
// but it is used by is_resolved, method_if_resolved, etc.
set_bytecode_1(invoke_code);
NOT_PRODUCT(verify(tty));
if (TraceInvokeDynamic) {
ttyLocker ttyl;
this->print(tty, 0);
}
}
示例7: method_kind
AbstractInterpreter::MethodKind AbstractInterpreter::method_kind(methodHandle m) {
// Abstract method?
if (m->is_abstract()) return abstract;
// Method handle primitive?
if (m->is_method_handle_intrinsic()) {
vmIntrinsics::ID id = m->intrinsic_id();
assert(MethodHandles::is_signature_polymorphic(id), "must match an intrinsic");
MethodKind kind = (MethodKind)( method_handle_invoke_FIRST +
((int)id - vmIntrinsics::FIRST_MH_SIG_POLY) );
assert(kind <= method_handle_invoke_LAST, "parallel enum ranges");
return kind;
}
#ifndef CC_INTERP
if (UseCRC32Intrinsics && m->is_native()) {
// Use optimized stub code for CRC32 native methods.
switch (m->intrinsic_id()) {
case vmIntrinsics::_updateCRC32 : return java_util_zip_CRC32_update;
case vmIntrinsics::_updateBytesCRC32 : return java_util_zip_CRC32_updateBytes;
case vmIntrinsics::_updateByteBufferCRC32 : return java_util_zip_CRC32_updateByteBuffer;
}
}
if (UseCRC32CIntrinsics) {
// Use optimized stub code for CRC32C methods.
switch (m->intrinsic_id()) {
case vmIntrinsics::_updateBytesCRC32C : return java_util_zip_CRC32C_updateBytes;
case vmIntrinsics::_updateDirectByteBufferCRC32C : return java_util_zip_CRC32C_updateDirectByteBuffer;
}
}
switch(m->intrinsic_id()) {
case vmIntrinsics::_intBitsToFloat: return java_lang_Float_intBitsToFloat;
case vmIntrinsics::_floatToRawIntBits: return java_lang_Float_floatToRawIntBits;
case vmIntrinsics::_longBitsToDouble: return java_lang_Double_longBitsToDouble;
case vmIntrinsics::_doubleToRawLongBits: return java_lang_Double_doubleToRawLongBits;
}
#endif // CC_INTERP
// Native method?
// Note: This test must come _before_ the test for intrinsic
// methods. See also comments below.
if (m->is_native()) {
assert(!m->is_method_handle_intrinsic(), "overlapping bits here, watch out");
return m->is_synchronized() ? native_synchronized : native;
}
// Synchronized?
if (m->is_synchronized()) {
return zerolocals_synchronized;
}
if (RegisterFinalizersAtInit && m->code_size() == 1 &&
m->intrinsic_id() == vmIntrinsics::_Object_init) {
// We need to execute the special return bytecode to check for
// finalizer registration so create a normal frame.
return zerolocals;
}
// Empty method?
if (m->is_empty_method()) {
return empty;
}
// Special intrinsic method?
// Note: This test must come _after_ the test for native methods,
// otherwise we will run into problems with JDK 1.2, see also
// InterpreterGenerator::generate_method_entry() for
// for details.
switch (m->intrinsic_id()) {
case vmIntrinsics::_dsin : return java_lang_math_sin ;
case vmIntrinsics::_dcos : return java_lang_math_cos ;
case vmIntrinsics::_dtan : return java_lang_math_tan ;
case vmIntrinsics::_dabs : return java_lang_math_abs ;
case vmIntrinsics::_dsqrt : return java_lang_math_sqrt ;
case vmIntrinsics::_dlog : return java_lang_math_log ;
case vmIntrinsics::_dlog10: return java_lang_math_log10;
case vmIntrinsics::_dpow : return java_lang_math_pow ;
case vmIntrinsics::_dexp : return java_lang_math_exp ;
case vmIntrinsics::_Reference_get:
return java_lang_ref_reference_get;
}
// Accessor method?
if (m->is_getter()) {
// TODO: We should have used ::is_accessor above, but fast accessors in Zero expect only getters.
// See CppInterpreter::accessor_entry in cppInterpreter_zero.cpp. This should be fixed in Zero,
// then the call above updated to ::is_accessor
assert(m->size_of_parameters() == 1, "fast code for accessors assumes parameter size = 1");
return accessor;
}
// Note: for now: zero locals for all non-empty methods
return zerolocals;
}
示例8: set_vtable_call
void ConstantPoolCacheEntry::set_vtable_call(Bytecodes::Code invoke_code, methodHandle method, int index) {
// either the method is a miranda or its holder should accept the given index
assert(method->method_holder()->is_interface() || method->method_holder()->verify_vtable_index(index), "");
// index >= 0; FIXME: inline and customize set_direct_or_vtable_call
set_direct_or_vtable_call(invoke_code, method, index);
}
示例9: set_direct_or_vtable_call
void ConstantPoolCacheEntry::set_direct_or_vtable_call(Bytecodes::Code invoke_code,
methodHandle method,
int vtable_index) {
bool is_vtable_call = (vtable_index >= 0); // FIXME: split this method on this boolean
assert(method->interpreter_entry() != NULL, "should have been set at this point");
assert(!method->is_obsolete(), "attempt to write obsolete method to cpCache");
int byte_no = -1;
bool change_to_virtual = false;
switch (invoke_code) {
case Bytecodes::_invokeinterface:
// We get here from InterpreterRuntime::resolve_invoke when an invokeinterface
// instruction somehow links to a non-interface method (in Object).
// In that case, the method has no itable index and must be invoked as a virtual.
// Set a flag to keep track of this corner case.
change_to_virtual = true;
// ...and fall through as if we were handling invokevirtual:
case Bytecodes::_invokevirtual:
{
if (!is_vtable_call) {
assert(method->can_be_statically_bound(), "");
// set_f2_as_vfinal_method checks if is_vfinal flag is true.
set_method_flags(as_TosState(method->result_type()),
( 1 << is_vfinal_shift) |
((method->is_final_method() ? 1 : 0) << is_final_shift) |
((change_to_virtual ? 1 : 0) << is_forced_virtual_shift),
method()->size_of_parameters());
set_f2_as_vfinal_method(method());
} else {
assert(!method->can_be_statically_bound(), "");
assert(vtable_index >= 0, "valid index");
assert(!method->is_final_method(), "sanity");
set_method_flags(as_TosState(method->result_type()),
((change_to_virtual ? 1 : 0) << is_forced_virtual_shift),
method()->size_of_parameters());
set_f2(vtable_index);
}
byte_no = 2;
break;
}
case Bytecodes::_invokespecial:
case Bytecodes::_invokestatic:
assert(!is_vtable_call, "");
// Note: Read and preserve the value of the is_vfinal flag on any
// invokevirtual bytecode shared with this constant pool cache entry.
// It is cheap and safe to consult is_vfinal() at all times.
// Once is_vfinal is set, it must stay that way, lest we get a dangling oop.
set_method_flags(as_TosState(method->result_type()),
((is_vfinal() ? 1 : 0) << is_vfinal_shift) |
((method->is_final_method() ? 1 : 0) << is_final_shift),
method()->size_of_parameters());
set_f1(method());
byte_no = 1;
break;
default:
ShouldNotReachHere();
break;
}
// Note: byte_no also appears in TemplateTable::resolve.
if (byte_no == 1) {
assert(invoke_code != Bytecodes::_invokevirtual &&
invoke_code != Bytecodes::_invokeinterface, "");
set_bytecode_1(invoke_code);
} else if (byte_no == 2) {
if (change_to_virtual) {
assert(invoke_code == Bytecodes::_invokeinterface, "");
// NOTE: THIS IS A HACK - BE VERY CAREFUL!!!
//
// Workaround for the case where we encounter an invokeinterface, but we
// should really have an _invokevirtual since the resolved method is a
// virtual method in java.lang.Object. This is a corner case in the spec
// but is presumably legal. javac does not generate this code.
//
// We set bytecode_1() to _invokeinterface, because that is the
// bytecode # used by the interpreter to see if it is resolved.
// We set bytecode_2() to _invokevirtual.
// See also interpreterRuntime.cpp. (8/25/2000)
// Only set resolved for the invokeinterface case if method is public.
// Otherwise, the method needs to be reresolved with caller for each
// interface call.
if (method->is_public()) set_bytecode_1(invoke_code);
} else {
assert(invoke_code == Bytecodes::_invokevirtual, "");
}
// set up for invokevirtual, even if linking for invokeinterface also:
set_bytecode_2(Bytecodes::_invokevirtual);
} else {
ShouldNotReachHere();
}
NOT_PRODUCT(verify(tty));
}
示例10: compute_monomorphic_entry
// is_optimized: Compiler has generated an optimized call (i.e., no inline
// cache) static_bound: The call can be static bound (i.e, no need to use
// inline cache)
void CompiledIC::compute_monomorphic_entry(const methodHandle& method,
KlassHandle receiver_klass,
bool is_optimized,
bool static_bound,
CompiledICInfo& info,
TRAPS) {
nmethod* method_code = method->code();
address entry = NULL;
if (method_code != NULL && method_code->is_in_use()) {
// Call to compiled code
if (static_bound || is_optimized) {
entry = method_code->verified_entry_point();
} else {
entry = method_code->entry_point();
}
}
if (entry != NULL) {
// Call to compiled code
info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass(), is_optimized);
} else {
// Note: the following problem exists with Compiler1:
// - at compile time we may or may not know if the destination is final
// - if we know that the destination is final, we will emit an optimized
// virtual call (no inline cache), and need a Method* to make a call
// to the interpreter
// - if we do not know if the destination is final, we emit a standard
// virtual call, and use CompiledICHolder to call interpreted code
// (no static call stub has been generated)
// However in that case we will now notice it is static_bound
// and convert the call into what looks to be an optimized
// virtual call. This causes problems in verifying the IC because
// it look vanilla but is optimized. Code in is_call_to_interpreted
// is aware of this and weakens its asserts.
// static_bound should imply is_optimized -- otherwise we have a
// performance bug (statically-bindable method is called via
// dynamically-dispatched call note: the reverse implication isn't
// necessarily true -- the call may have been optimized based on compiler
// analysis (static_bound is only based on "final" etc.)
#ifdef COMPILER2
#ifdef TIERED
#if defined(ASSERT)
// can't check the assert because we don't have the CompiledIC with which to
// find the address if the call instruction.
//
// CodeBlob* cb = find_blob_unsafe(instruction_address());
// assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
#endif // ASSERT
#else
assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
#endif // TIERED
#endif // COMPILER2
if (is_optimized) {
// Use stub entry
info.set_interpreter_entry(method()->get_c2i_entry(), method());
} else {
// Use icholder entry
CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass());
info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
}
}
assert(info.is_optimized() == is_optimized, "must agree");
}
示例11: is_intrinsic_supported
bool Compiler::is_intrinsic_supported(const methodHandle& method) {
vmIntrinsics::ID id = method->intrinsic_id();
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
if (method->is_synchronized()) {
// C1 does not support intrinsification of synchronized methods.
return false;
}
switch (id) {
case vmIntrinsics::_compareAndSwapLong:
if (!VM_Version::supports_cx8()) return false;
break;
case vmIntrinsics::_getAndAddInt:
if (!VM_Version::supports_atomic_getadd4()) return false;
break;
case vmIntrinsics::_getAndAddLong:
if (!VM_Version::supports_atomic_getadd8()) return false;
break;
case vmIntrinsics::_getAndSetInt:
if (!VM_Version::supports_atomic_getset4()) return false;
break;
case vmIntrinsics::_getAndSetLong:
if (!VM_Version::supports_atomic_getset8()) return false;
break;
case vmIntrinsics::_getAndSetObject:
#ifdef _LP64
if (!UseCompressedOops && !VM_Version::supports_atomic_getset8()) return false;
if (UseCompressedOops && !VM_Version::supports_atomic_getset4()) return false;
#else
if (!VM_Version::supports_atomic_getset4()) return false;
#endif
break;
case vmIntrinsics::_arraycopy:
case vmIntrinsics::_currentTimeMillis:
case vmIntrinsics::_nanoTime:
case vmIntrinsics::_Reference_get:
// Use the intrinsic version of Reference.get() so that the value in
// the referent field can be registered by the G1 pre-barrier code.
// Also to prevent commoning reads from this field across safepoint
// since GC can change its value.
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence:
case vmIntrinsics::_floatToRawIntBits:
case vmIntrinsics::_intBitsToFloat:
case vmIntrinsics::_doubleToRawLongBits:
case vmIntrinsics::_longBitsToDouble:
case vmIntrinsics::_getClass:
case vmIntrinsics::_isInstance:
case vmIntrinsics::_currentThread:
case vmIntrinsics::_dabs:
case vmIntrinsics::_dsqrt:
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dpow:
case vmIntrinsics::_getObject:
case vmIntrinsics::_getBoolean:
case vmIntrinsics::_getByte:
case vmIntrinsics::_getShort:
case vmIntrinsics::_getChar:
case vmIntrinsics::_getInt:
case vmIntrinsics::_getLong:
case vmIntrinsics::_getFloat:
case vmIntrinsics::_getDouble:
case vmIntrinsics::_putObject:
case vmIntrinsics::_putBoolean:
case vmIntrinsics::_putByte:
case vmIntrinsics::_putShort:
case vmIntrinsics::_putChar:
case vmIntrinsics::_putInt:
case vmIntrinsics::_putLong:
case vmIntrinsics::_putFloat:
case vmIntrinsics::_putDouble:
case vmIntrinsics::_getObjectVolatile:
case vmIntrinsics::_getBooleanVolatile:
case vmIntrinsics::_getByteVolatile:
case vmIntrinsics::_getShortVolatile:
case vmIntrinsics::_getCharVolatile:
case vmIntrinsics::_getIntVolatile:
case vmIntrinsics::_getLongVolatile:
case vmIntrinsics::_getFloatVolatile:
case vmIntrinsics::_getDoubleVolatile:
case vmIntrinsics::_putObjectVolatile:
case vmIntrinsics::_putBooleanVolatile:
case vmIntrinsics::_putByteVolatile:
case vmIntrinsics::_putShortVolatile:
case vmIntrinsics::_putCharVolatile:
case vmIntrinsics::_putIntVolatile:
case vmIntrinsics::_putLongVolatile:
case vmIntrinsics::_putFloatVolatile:
case vmIntrinsics::_putDoubleVolatile:
case vmIntrinsics::_getByte_raw:
case vmIntrinsics::_getShort_raw:
case vmIntrinsics::_getChar_raw:
case vmIntrinsics::_getInt_raw:
//.........这里部分代码省略.........
示例12: fill_stackframe
// Fill StackFrameInfo with declaringClass and bci and initialize memberName
void StackWalk::fill_stackframe(Handle stackFrame, const methodHandle& method, int bci) {
java_lang_StackFrameInfo::set_declaringClass(stackFrame(), method->method_holder()->java_mirror());
java_lang_StackFrameInfo::set_method_and_bci(stackFrame(), method, bci);
}