本文整理汇总了C++中matrix_type类的典型用法代码示例。如果您正苦于以下问题:C++ matrix_type类的具体用法?C++ matrix_type怎么用?C++ matrix_type使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了matrix_type类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: solve
vector_type solve(const matrix_type& A, const vector_type& y)
{
typedef typename matrix_type::size_type size_type;
typedef typename matrix_type::value_type value_type;
namespace ublas = boost::numeric::ublas;
matrix_type Q(A.size1(), A.size2()), R(A.size1(), A.size2());
qr (A, Q, R);
vector_type b = prod(trans(Q), y);
vector_type result;
if (R.size1() > R.size2())
{
size_type min = (R.size1() < R.size2() ? R.size1() : R.size2());
result = ublas::solve(subrange(R, 0, min, 0, min),
subrange(b, 0, min),
ublas::upper_tag());
}
else
{
result = ublas::solve(R, b, ublas::upper_tag());
}
return result;
}
示例2: copy
/**
* 13.
* @brief Copy the contents of a matrix.
* @param[out] A A is overwritten with B.
* @param[in] B The matrix to be copied.
*/
static void copy (matrix_type &A, const matrix_type &B) {
/** Result matrices should always be of the right size */
A.Resize (B.Height(), B.Width());
/** This one is pretty simple, but the order is different */
elem::Copy (B, A);
}
示例3: diag
/**
* 15.
* @brief Extract the diagonal elements of a matrix.
* @param[in] A The (square) matrix whose diagonal is to be extracted.
* @param[out] B A diagonal matrix containing entries from A.
*/
static void diag(const matrix_type& A,
matrix_type& B) {
/* create a zeros matrix of the right dimension and assign to B */
const int n = A.Width();
B = zeros(n, n);
/* Set the diagonals of B */
for (int i=0; i<n; ++i) B.Set(i, i, A.Get(i,i));
}
示例4: transpose
/**
* 6.
* @brief Compute the matrix transpose.
* @param[in] A The matrix to be transposed.
* @param[out] B B is overwritten with A^{T}
*/
static void transpose (const matrix_type& A,
matrix_type& B) {
/** Result matrices should always have sufficient space */
B.Resize(A.Width(), A.Height());
/** Compute transpose */
elem::Transpose (A, B);
}
示例5: multiply
/**
* 5.
* @brief Multiply one matrix with another.
* @param[in] A The first matrix
* @param[in] B The second matrix
* @param[out] C C is overwritten with (A*B)
*/
static void multiply (const matrix_type& A,
const matrix_type& B,
matrix_type& C) {
/** Result matrices should always have sufficient space */
C.Resize(A.Height(), B.Width());
/** We have to do a Gemm */
elem::Gemm (elem::NORMAL, elem::NORMAL, 1.0, A, B, 0.0, C);
}
示例6: tensor
/** @brief Constructs a tensor with a matrix
*
* \note Initially the tensor will be two-dimensional.
*
* @param v matrix to be copied.
*/
BOOST_UBLAS_INLINE
tensor (const matrix_type &v)
: tensor_expression_type<self_type>()
, extents_ ()
, strides_ ()
, data_ (v.data())
{
if(!data_.empty()){
extents_ = extents_type{v.size1(),v.size2()};
strides_ = strides_type(extents_);
}
}
示例7: Vec
// Vectorizes (stacks columns of) an input matrix.
state_type Vec(const matrix_type &A)
{
state_type vectorized(A.size1()*A.size2());
for (int n = 0; n < A.size1(); n++) {
for (int m = 0; m < A.size2(); m++) {
vectorized(n*A.size1()+m) = A(m,n);
}
}
return vectorized;
}
示例8: negation
/**
* 7.
* @brief Compute element-wise negation of a matrix.
* @param[in] A The matrix to be negated.
* @param[out] B B is overwritten with -1.0*A
*/
static void negation (const matrix_type& A,
matrix_type& B) {
/** Result matrices should always have sufficient space */
B.Resize(A.Height(), A.Width());
/** Copy over the matrix */
elem::Copy (A, B);
/** Multiply by -1.0 */
elem::Scal(-1.0, B);
}
示例9: calc
static void calc(matrix_type& a, vector_type& v, const char& jobz) {
namespace impl = boost::numeric::bindings::lapack::detail;
//impl::syev(jobz,a,v);
char uplo = 'L';
integer_t n = a.size2();
integer_t lda = a.size1();
integer_t lwork =-1;
integer_t info = 0;
value_type dlwork;
impl::syev(jobz, uplo, n, mtraits::data(a), lda, vtraits::data(v), &dlwork, lwork, info);
}
示例10: apply
/**
* Apply columnwise the sketching transform that is described by the
* the transform with output sketch_of_A.
*/
void apply (const matrix_type& A,
output_matrix_type& sketch_of_A,
columnwise_tag dimension) const {
const value_type *a = A.LockedBuffer();
El::Int lda = A.LDim();
value_type *sa = sketch_of_A.Buffer();
El::Int ldsa = sketch_of_A.LDim();
for (El::Int j = 0; j < A.Width(); j++)
for (El::Int i = 0; i < data_type::_S; i++)
sa[j * ldsa + i] = a[j * lda + data_type::_samples[i]];
}
示例11: minus
/**
* 4.
* @brief Subtract one matrix from another.
* @param[in] A The first matrix
* @param[in] B The second matrix
* @param[out] C C is overwritten with (A-B)
*/
static void minus (const matrix_type& A,
const matrix_type& B,
matrix_type& C) {
/** Result matrices should always have sufficient space */
C.Resize(A.Height(), A.Width());
/** first copy the matrix over */
elem::Copy (A, C);
/** now, subtract the other matrix in */
elem::Axpy (-1.0, B, C);
}
示例12: is_positive_definite
bool is_positive_definite( const matrix<T,N,A>& m )
{
typedef matrix<T,N,A> matrix_type;
typedef typename matrix_type::range_type range_type;
if ( m.row() != m.col() ) return false;
for ( std::size_t i = 1; i != m.row(); ++i )
{
const matrix_type a{ m, range_type{0,i}, range_type{0,i} };
if ( a.det() <= T(0) ) return false;
}
return true;
}
示例13: _compute_rooted_fa
// --------------------------------------------------------------------
static matrix_type _compute_rooted_fa(const matrix_type & fa)
{
const size_t K = fa.get_height();
const size_t J = fa.get_width();
assert(K > 1);
matrix_type rooted_fa (K - 1, J);
for (size_t k = 0; k + 1 < K; k++)
for (size_t j = 0; j < J; j++)
rooted_fa(k, j) = fa(k + 1, j) - fa(0, j);
return rooted_fa;
}
示例14: apply_impl_vdist
/**
* Apply the sketching transform on A and write to sketch_of_A.
* Implementation for columnwise.
*/
void apply_impl_vdist(const matrix_type& A,
output_matrix_type& sketch_of_A,
skylark::sketch::columnwise_tag tag) const {
// Just a local operation on the Matrix
_local.apply(A.LockedMatrix(), sketch_of_A.Matrix(), tag);
}
示例15: Kronecker
// Tensor product. Probably a better way of doing this.
matrix_type Kronecker(const matrix_type &A, const matrix_type &B)
{
matrix_type C(A.size1()*B.size1(), A.size2()*B.size2());
for (int i=0; i < A.size1(); i++) {
for (int j=0; j < A.size2(); j++) {
for (int k=0; k < B.size1(); k++) {
for (int l=0; l < B.size2(); l++) {
C(i*B.size1()+k, j*B.size2()+l) = A(i,j)*B(k,l);
}
}
}
}
return C;
}