本文整理汇总了C++中matrix_t类的典型用法代码示例。如果您正苦于以下问题:C++ matrix_t类的具体用法?C++ matrix_t怎么用?C++ matrix_t使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了matrix_t类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: normalizeRM
void normalizeRM(matrix_t & Q, StateMap const & staMap, float subs)
{
vector_t equiFreq = deriveEquiFreqForReversibleRM(Q);
HammingDistance hammingDistance(staMap);
number_t normConst = 0;
for (unsigned i = 0; i < Q.size1(); ++ i)
for (unsigned j = 0; j < Q.size2(); ++ j)
normConst += equiFreq(i) * Q(i,j) * hammingDistance(i,j);
Q = Q * (subs / normConst);
}
示例2: output_matrix
void output_matrix(ostream& out, matrix_t& M, unsigned n) {
out << "matrix_t M[" << n << "] = {\n";
for (unsigned i=0; i<M.size1(); ++i) {
out << "\t{ ";
out << M(i,0);
for (unsigned j=1; j<M.size2() ; ++j)
out << ',' << M(i,j);
out << " },\n";
}
out << "}\n";
}
示例3: nonZeroDiagonalEntryOrDie
unsigned nonZeroDiagonalEntryOrDie(matrix_t const & Q)
{
assert( Q.size1() == Q.size1() ); // Q is quadratic
for (unsigned i = 0; i < Q.size1(); i++)
if (Q(i, i) != 0.0)
return i;
errorAbort("All zero diagonal entries. Bails out.");
return 0; // will never reach this, only to quiet compiler
}
示例4: color_matrix_transform
color_matrix_transform(matrix_t const & matrix)
: matrix_(matrix)
{
if (matrix.shape()[0] == 3 && matrix.shape()[1] == 3)
{
// TODO make specialization for 3x3 matrix
matrix_.resize(boost::extents[4][5]);
matrix_[3][3] = 1;
}
else
BOOST_ASSERT(matrix.shape()[0] == 4 && matrix.shape()[1] == 5);
}
示例5: getrf
// LU factorization of a general matrix A.
// Computes an LU factorization of a general M-by-N matrix A using
// partial pivoting with row interchanges. Factorization has the form
// A = P*L*U.
// a (IN/OUT - matrix(M,N)) On entry, the coefficient matrix A to be factored. On exit, the factors L and U from the factorization A = P*L*U.
// ipivot (OUT - vector(min(M,N))) Integer vector. The row i of A was interchanged with row IPIV(i).
// info (OUT - int)
// 0 : successful exit
// < 0 : If INFO = -i, then the i-th argument had an illegal value.
// > 0 : If INFO = i, then U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
int getrf (matrix_t& a, pivot_t& ipivot)
{
matrix_t::value_type* _a = a.data().begin();
int _m = int(a.size1());
int _n = int(a.size2());
int _lda = _m; // minor size
int _info;
rawLAPACK::getrf (_m, _n, _a, _lda, ipivot.data().begin(), _info);
return _info;
}
示例6: svd_hint_from_most_similar
vector_t
svd_hint_from_most_similar(
index_t const user,
matrix_t const & sim,
matrix_t const & P,
matrix_t const & Q)
{
stack::fe_asserter dummy{};
vector_ll_t neighbors{std::min<index_t>(10,sim.get_rows())};
vector_t weights{std::min<index_t>(10,sim.get_rows())};
most_similar(user, neighbors, weights, sim);
return svd_hint(neighbors, weights, P, Q);
}
示例7: est_factor
vector_t /* user_factor */
est_factor(
vector_ll_t const & neighbors,
vector_t const & weights,
matrix_t const & P)
{
stack::fe_asserter dummy1{};
scoped_timer dummy(std::string(__func__));
vector_t user_factor{P.get_cols()};
for(int i = 0; i < neighbors.get_len(); i++)
user_factor += weights[i] * P.get_row_clone(neighbors[i]);
return user_factor.normalize_2();
}
示例8: filtra
void matrix_t::filtra(matrix_t& M, matrix_item_t it, double precision){
matrix_inx_t m = get_m();
matrix_inx_t n = get_n();
M.redimensiona(m, n);
for (int i = 1; i < m; i++) {
for (int j = 1; j < n ; j++) {
if (M.igual(get_matrix_item(i, j),it,precision) == true) {
M.set_matrix_item(i, j, get_matrix_item(i, j));
} else {
matrix_item_t x = 0.00000;
M.set_matrix_item(i, j, x);
}
}
}
}
开发者ID:JonasLopezMesa,项目名称:cpp_AEDA_matrices_punto_flotante_y_abstraccion,代码行数:15,代码来源:matrices_3.cpp
示例9: applyGaussian
static void applyGaussian(matrix_t& m) {
matrix_t::array_type& arr = m.data();
double sig = *std::max_element(arr.begin(), arr.end());
BOOST_FOREACH(double& v, arr) {
v = std::exp(-v * v / (2 * sig * sig));
}
示例10: stack_assert
// mult X * D
matrix_t diag_t::left_mult(matrix_t const &X) const
{
stack::fe_asserter fe{};
stack_assert(diagonal.get_len() == X.get_cols());
matrix_t ret = X.clone();
if(ret.get_rows() < ret.get_cols())
for(size_t r = 0; r < ret.get_rows(); r++)
ret[r] *= diagonal;
else
for(size_t c = 0; c < ret.get_cols(); c++)
ret.get_col(c) *= diagonal[c];
return ret;
}
示例11: multi2
void multi2(const matrix_t &A, const matrix_t &B, matrix_t &C)
{
size_t n = A.size();
float **__restrict__ const da = A.data;
float **__restrict__ const db = B.data;
float **__restrict__ dc = C.data;
const size_t chunk_size = 8;
const size_t chunks = n / chunk_size;
#pragma omp parallel for num_threads(8)
for(size_t i = 0; i < n; ++i)
{
__m256 a_line, b_line, c_line, r_line;
for(size_t k = 0; k < n; ++k)
{
float c = da[i][k];
a_line = _mm256_set_ps(c, c, c, c, c, c, c, c);
for(size_t j = 0; j < chunks; ++j)
{
float mc[32] __attribute__((aligned(32)));
b_line = _mm256_load_ps(&db[k][j * chunk_size]);
c_line = _mm256_load_ps(&dc[i][j * chunk_size]);
r_line = _mm256_mul_ps(a_line, b_line);
r_line = _mm256_add_ps(r_line, c_line);
_mm256_store_ps(&dc[i][j * chunk_size], r_line);
}
for(size_t j = chunk_size * chunks; j < n; ++j)
{
dc[i][j] += c * db[k][j];
}
}
}
}
示例12: search
bool search(matrix_t &matrix, int x, int y, string needle, int start_index, bool scan) {
int x_max = matrix.size() - 1;
int y_max = matrix[0].size() - 1;
if (x < 0 || x > x_max) return false;
if (y < 0 || y > y_max) return false;
if (needle.size() == start_index) {
return true;
}
if (matrix[x][y] == needle[start_index]) {
int original_char = matrix[x][y];
matrix[x][y] = '.';
for (int i = 0; i < 8; ++i) {
bool found = search(matrix, x + search_x[i], y + search_y[i], needle, start_index + 1, false);
if (found) return true;
}
matrix[x][y] = original_char;
}
if (scan) {
if (y < y_max) {
return search(matrix, x, y + 1, needle, start_index, true);
} else if (x < x_max) {
return search(matrix, x + 1, 0, needle, start_index, true);
}
}
return false;
}
示例13: geqrf
// QR Factorization of a MxN General Matrix A.
// a (IN/OUT - matrix(M,N)) On entry, the coefficient matrix A. On exit , the upper triangle and diagonal is the min(M,N) by N upper triangular matrix R. The lower triangle, together with the tau vector, is the orthogonal matrix Q as a product of min(M,N) elementary reflectors.
// tau (OUT - vector (min(M,N))) Vector of the same numerical type as A. The scalar factors of the elementary reflectors.
// info (OUT - int)
// 0 : function completed normally
// < 0 : The ith argument, where i = abs(return value) had an illegal value.
int geqrf (matrix_t& a, vector_t& tau)
{
int _m = int(a.size1());
int _n = int(a.size2());
int _lda = int(a.size1());
int _info;
// make_sure tau's size is greater than or equal to min(m,n)
if (int(tau.size()) < (_n<_m ? _n : _m) )
return -104;
int ldwork = _n*_n;
vector_t dwork(ldwork);
rawLAPACK::geqrf (_m, _n, a.data().begin(), _lda, tau.data().begin(), dwork.data().begin(), ldwork, _info);
return _info;
}
示例14: matrixMul
matrix_t matrixMul(const matrix_t & matrixA, const matrix_t & matrixB) {
auto dimension = matrixA.size();
assert(matrixA.size() == dimension);
assert(matrixA[0].size() == dimension);
assert(matrixB.size() == dimension);
assert(matrixB[0].size() == dimension);
matrix_t matrixC(dimension, typename matrix_t::value_type(dimension, 0));//0ed matrix
for(int x{0}; x < dimension; ++x)
for(int i{0}; i < dimension; ++i)
for(int y{0}; y < dimension; ++y)
matrixC[x][y] += matrixA[x][i] * matrixB[i][y];
return matrixC;//move semantics ftw
}
示例15: mkFactor
void NormalMeanPostFactor::mkFactor(matrix_t &m) const{
//Remember to convert to index space
boost::math::normal dist( (postmean_-minv_)*bins_/(maxv_-minv_),
std::sqrt(postvar_)*bins_/(maxv_-minv_) );
for(int i = 0; i < m.size2(); ++i){
m(0,i) = cdf(dist, i+1)-cdf(dist,i);
}
}