本文整理汇总了C++中math类的典型用法代码示例。如果您正苦于以下问题:C++ math类的具体用法?C++ math怎么用?C++ math使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了math类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: operator
Tensor HeightField::operator()(math::Vector2f const & p) const
{
static const int dx = 2, dy = 2;
if (m_image.isNull())
{
return Tensor();
}
QPoint ip = m_image.toImageCoords(p).toPoint();
if (! QRect(QPoint(0,0), m_image.size()-QSize(dx,dy)).contains(ip))
{
return Tensor();
}
QRgb pix0 = m_image.pixel(ip);
float f0 = QColor::fromRgb(pix0).valueF();
QRgb pix1 = m_image.pixel(ip + QPoint(dx,0));
float f1 = QColor::fromRgb(pix1).valueF();
QRgb pix2 = m_image.pixel(ip + QPoint(0,dy));
float f2 = QColor::fromRgb(pix2).valueF();
qreal dHx = 100.0f * (f1 - f0);
qreal dHy = 100.0f * (f2 - f0);
qreal f = atan2f(dHy, dHx) + M_PI/2.0f;
qreal r = sqrtf(pow2(dHx) + pow2(dHy));
return Tensor(r, f);
}
示例2: unit_vector
typename traits::unit_vector<Value>::type
inline unit_vector(std::size_t k, std::size_t n)
{
using math::zero; using math::one;
dense_vector<Value> v(n, zero(Value()));
v[k]= one(Value());
return v;
}
示例3: Q_ASSERT
math::Tensor BasisField::operator()(math::Vector2f const & p) const
{
if (0 == m_singularityType)
{
return scale * m_regularValue;
}
else
{
Q_ASSERT(m_singularityType < NumSingularityTypes);
Vector2f v = (p - p0).normalized();
float x = v(0);
float y = v(1);
switch (m_singularityType)
{
case SingularityType_Center:
return scale * math::Tensor::fromValues(pow2(y)-pow2(x), -2.0f*x*y);
case SingularityType_Wedge:
return scale * math::Tensor::fromValues(x, y);
case SingularityType_Node:
return scale * math::Tensor::fromValues(pow2(x)-pow2(y), 2.0f*x*y);
case SingularityType_Trisector:
return scale * math::Tensor::fromValues(x, -y);
case SingularityType_Saddle:
return scale * math::Tensor::fromValues(pow2(x)-pow2(y), -2.0f*x*y);
case SingularityType_Focus:
return scale * math::Tensor::fromValues(pow2(y)-pow2(x), 2.0f*x*y);
default:
// not reached, hopefully
return math::Tensor();
}
}
}
示例4: orthogonalize_factors
dense2D<typename mtl::Collection
<typename mtl::Collection<VVector>::value_type
>::value_type, parameters<> >
inline orthogonalize_factors(VVector& v, tag::vector)
{
using ::mtl::two_norm;
using math::zero;
using mtl::size1D;
typedef typename mtl::Collection<VVector>::size_type Size;
typedef typename mtl::Collection<VVector>::value_type Vector;
typedef typename mtl::Collection<Vector>::value_type Scalar;
dense2D<Scalar, parameters<> > tau(size1D(v), size1D(v));
tau= zero(Scalar());
for (Size j= 0; j < size1D(v); ++j) {
for (Size i= 0; i < j; ++i) {
Scalar t= dot(entry1D(v, i), entry1D(v, j)) / tau[i][i];
tau[i][j]= t;
entry1D(v, j)-= t * entry1D(v, i);
}
tau[j][j]= dot(entry1D(v, j), entry1D(v, j));
}
return tau;
}
示例5: Tensor
Tensor BasisSumField::operator()(Vector2f const & p) const
{
ElementList::const_iterator it;
unsigned int i;
unsigned int numElements = m_elements.size();
if (numElements == 0)
{
return Tensor();
}
typedef float real;
typedef real realv[numElements];
// calculate distances
//
realv dists;
real distsSum = 0.0f;
for (i = 0, it = m_elements.begin(); i < numElements; ++i, ++it)
{
Element * bf = *it;
real d = (p - bf->p0).norm();
if (d == 0.0) d = 0.001;
dists[i] = d;
distsSum += d;
}
// calculate "nearness" value
//
realv nears;
real nearsSum = 0.0f;
for (i = 0; i < numElements; ++i)
{
real n = math::pow2(distsSum / dists[i]);
nears[i] = n;
nearsSum += n;
}
// calculate vector sum
//
math::Tensor t;
for (i = 0, it = m_elements.begin(); i < numElements; ++i, ++it)
{
Element * bf = *it;
float w = nears[i] / nearsSum;
t += w * rbf(p, bf->p0, decay()) * bf->scale * (*bf)(p);
}
return t;
}
示例6:
void _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::pp_ker_t::operator ()
(dst_data_t *dst, const acc_data_t *acc, const char *bias,
const float *scales, float nslope, float sum_scale, float signed_scale,
int g, size_t start, size_t end)
{
using math::get_bias;
if (end <= start)
return;
if (ker_) {
// JIT
ker_args args;
size_t oc_offset = start % OC_;
size_t os_offset = start / OC_;
args.acc = acc + start;
args.dst = dst + os_offset * dst_os_stride_ + oc_offset;
args.bias = bias + (g * jcp_.oc + oc_offset) * bias_data_type_size_;
args.scales = scales + scale_idx_mult_ * (g * jcp_.oc + oc_offset);
args.nslope = nslope;
args.sum_scale = sum_scale;
args.signed_scale = signed_scale;
args.len = end - start;
args.oc_offset = oc_offset;
ker_(&args);
}
else {
// Fallback
const size_t first_oc = start % OC_;
const size_t last_oc = (end - 1) % OC_;
const size_t first_os = start / OC_;
const size_t last_os = (end - 1) / OC_;
for (size_t os = first_os; os <= last_os; os++) {
const size_t start_oc = (os == first_os) ? first_oc : 0;
const size_t end_oc = (os == last_os) ? last_oc : OC_ - 1;
for (size_t oc = start_oc; oc <= end_oc; oc++) {
const size_t acc_off = os * jcp_.oc + oc;
const size_t dst_off = os * dst_os_stride_ + oc;
float d = (float)(acc[acc_off]);
if (jcp_.signed_input)
d *= signed_scale;
if (do_bias_)
d += get_bias(bias, g * jcp_.oc + oc,
bias_data_type_);
d *= scales[(g * jcp_.oc + oc) * scale_idx_mult_];
if (do_sum_)
d += sum_scale * dst[dst_off];
if (do_relu_ && d < 0)
d *= nslope;
dst[dst_off] = qz_a1b0<float, dst_data_t>()(d);
}
}
}
};
示例7: diagonal
/// Constructor takes matrix reference
explicit diagonal(const Matrix& A) : inv_diag(num_rows(A))
{
mtl::vampir_trace<5050> tracer;
MTL_THROW_IF(num_rows(A) != num_cols(A), mtl::matrix_not_square());
using math::reciprocal;
for (size_type i= 0; i < num_rows(A); ++i)
inv_diag[i]= reciprocal(A[i][i]);
}
示例8: operator
// To prevent that cout << A * B prints the element-wise product, suggestion by Hui Li
// It is rather inefficient, esp. for multiple products (complexity increases with the number of arguments :-!)
// or sparse matrices.
// Better compute your product first and print it then when compute time is an issue,
// this is ONLY for convenience.
result_value_type
operator()(std::size_t r, std::size_t c) const
{
using math::zero;
MTL_THROW_IF(num_cols(first) != num_rows(second), incompatible_size());
result_value_type ref, sum(zero(ref));
for (std::size_t i= 0; i < num_cols(first); i++)
sum+= first(r, i) * second(i, c);
return sum;
}
示例9: factorize
// Undefined if matrix is not symmetric
void factorize(const Matrix& A, mtl::tag::sparse)
{
using namespace mtl; using namespace mtl::tag; using mtl::traits::range_generator;
using math::reciprocal; using mtl::matrix::upper;
typedef typename range_generator<row, U_type>::type cur_type;
typedef typename range_generator<nz, cur_type>::type icur_type;
MTL_THROW_IF(num_rows(A) != num_cols(A), mtl::matrix_not_square());
U= upper(A); crop(U);
U_type L(lower(A)); // needed to find non-zeros in column
typename mtl::traits::col<U_type>::type col(U), col_l(L);
typename mtl::traits::value<U_type>::type value(U);
cur_type kc= begin<row>(U), kend= end<row>(U);
for (size_type k= 0; kc != kend; ++kc, ++k) {
icur_type ic= begin<nz>(kc), iend= end<nz>(kc);
MTL_DEBUG_THROW_IF(col(*ic) != k, mtl::missing_diagonal());
// U[k][k]= 1.0 / sqrt(U[k][k]);
value_type inv_dia= reciprocal(sqrt(value(*ic)));
value(*ic, inv_dia);
icur_type jbegin= ++ic;
for (; ic != iend; ++ic) {
// U[k][i] *= U[k][k]
value_type d= value(*ic) * inv_dia;
value(*ic, d);
size_type i= col(*ic);
// find non-zeros U[j][i] below U[k][i] for j in (k, i]
// 1. Go to ith row in L (== ith column in U)
cur_type irow= begin<row>(L); irow+= i;
// 2. Find nonzeros with col() in (k, i]
icur_type jc= begin<nz>(irow), jend= end<nz>(irow);
while (col_l(*jc) <= k) ++jc;
while (col_l(*--jend) > i);
++jend;
for (; jc != jend; ++jc) {
size_type j= col_l(*jc);
U.lvalue(j, i)-= d * U[k][j];
}
// std::cout << "U after eliminating U[" << i << "][" << k << "] =\n" << U;
}
}
}
示例10: trace
typename Collection<Matrix>::value_type
inline trace(const Matrix& matrix)
{
using math::zero;
typedef typename Collection<Matrix>::value_type value_type;
MTL_THROW_IF(num_rows(matrix) != num_cols(matrix), matrix_not_square());
// If matrix is empty then the result is the identity from the default-constructed value
if (num_rows(matrix) == 0) {
value_type ref;
return zero(ref);
}
value_type value= matrix[0][0];
for (unsigned i= 1; i < num_rows(matrix); i++)
value+= matrix[i][i];
return value;
}
示例11: factorize
void factorize(const Matrix& A, L_type& L, U_type& U, boost::mpl::true_)
{
using namespace mtl; using namespace mtl::tag; using mtl::traits::range_generator;
using math::reciprocal;
MTL_THROW_IF(num_rows(A) != num_cols(A), mtl::matrix_not_square());
mtl::vampir_trace<5038> tracer;
typedef typename mtl::Collection<Matrix>::value_type value_type;
typedef typename mtl::Collection<Matrix>::size_type size_type;
typedef mtl::mat::parameters<mtl::row_major, mtl::index::c_index, mtl::non_fixed::dimensions, false, size_type> para;
typedef mtl::mat::compressed2D<value_type, para> LU_type;
LU_type LU(A);
typedef typename range_generator<row, LU_type>::type cur_type;
typedef typename range_generator<nz, cur_type>::type icur_type;
typename mtl::traits::col<LU_type>::type col(LU);
typename mtl::traits::value<LU_type>::type value(LU);
mtl::vec::dense_vector<value_type, mtl::vec::parameters<> > inv_dia(num_rows(A));
cur_type ic= begin<row>(LU), iend= end<row>(LU);
for (size_type i= 0; ic != iend; ++ic, ++i) {
for (icur_type kc= begin<nz>(ic), kend= end<nz>(ic); kc != kend; ++kc) {
size_type k= col(*kc);
if (k == i) break;
value_type aik= value(*kc) * inv_dia[k];
value(*kc, aik);
for (icur_type jc= kc + 1; jc != kend; ++jc)
value(*jc, value(*jc) - aik * LU[k][col(*jc)]);
// std::cout << "LU after eliminating A[" << i << "][" << k << "] =\n" << LU;
}
inv_dia[i]= reciprocal(LU[i][i]);
}
invert_diagonal(LU);
L= strict_lower(LU);
U= upper(LU);
}
示例12: drawLine
/**
* @brief Draw a line
*
* Draws a straight line between the two points.
*
* @param x1 the x coordinate of the first point
* @param y2 the y coordinate of the first point
* @param x1 the x coordinate of the second point
* @param y2 the y coordinate of the second point
* @param color the Color to of the line
*/
void CatPictureApp::drawLine(int x1, int y1, int x2, int y2, Color8u* color)
// changed the names of the parametets, thought x1 would make more sense
// to the user than xF, fairly arbitrary though.. might just be personal preference
{
//Implementation of Bresenham's line algorithm, derived from pseudocode
//from Wikipedia.
int dx = intMath->abs(x2 - x1);
int dy = intMath->abs(y2 - y1);
int sx = intMath->signum(x2 - x1);
int sy = intMath->signum(y2 - y1);
int err = dx - dy;
int x = x1;
int y = y1;
while(true)
{
modify(color,x,y);
if(x == x2 && y == y2)
break;
int e2 = 2 * err;
if(e2 > -dy)
{
err -= dy;
x += sx;
}
if(e2 < dx)
{
err += dx;
y += sy;
}
}
}
示例13: drawLine
/**
* Draws a straight line between the two points.
* Params:
xI = Initial X
yI = Initial Y
xF = Final X
yF = Final Y
color = Color to draw.
*/
void CatPictureApp::drawLine(int xI, int yI, int xF, int yF, Color8u* color)
{
//Implementation of Bresenham's line algorithm, derived from pseudocode
//from Wikipedia.
int dx = intMath->abs(xF - xI);
int dy = intMath->abs(yF - yI);
int sx = intMath->signum(xF - xI);
int sy = intMath->signum(yF - yI);
int err = dx - dy;
int x = xI;
int y = yI;
while(true)
{
modify(color,x,y);
if(x == xF && y == yF)
break;
int e2 = 2 * err;
if(e2 > -dy)
{
err -= dy;
x += sx;
}
if(e2 < dx)
{
err += dx;
y += sy;
}
}
}
示例14: getAbsoluteTimeInSeconds
Scalar getAbsoluteTimeInSeconds() const
{
// This is super wonky, should be improved someday
const auto delta = chVTTimeElapsedSinceX(previous_time_systicks_);
previous_time_systicks_ += delta;
absolute_time_systicks_ += delta;
return Scalar(absolute_time_systicks_) / Scalar(CH_CFG_ST_FREQUENCY);
}
示例15: getBounds
geom::aabb Object::getBounds() const {
geom::aabb bounds(
vec3f(
vertices_[0], vertices_[1], vertices_[2]));
for(int i=1; i<nVertices_; ++i) {
bounds.extendToFit(
vec3f(
vertices_[3*i], vertices_[3*i+1], vertices_[3*i+2]));
}
return bounds;
}