当前位置: 首页>>代码示例>>C++>>正文


C++ mat_zz_pE::NumRows方法代码示例

本文整理汇总了C++中mat_zz_pE::NumRows方法的典型用法代码示例。如果您正苦于以下问题:C++ mat_zz_pE::NumRows方法的具体用法?C++ mat_zz_pE::NumRows怎么用?C++ mat_zz_pE::NumRows使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mat_zz_pE的用法示例。


在下文中一共展示了mat_zz_pE::NumRows方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: gauss

long gauss(mat_zz_pE& M_in, long w)
{
   long k, l;
   long i, j;
   long pos;
   zz_pX t1, t2, t3;
   zz_pX *x, *y;

   long n = M_in.NumRows();
   long m = M_in.NumCols();

   if (w < 0 || w > m)
      LogicError("gauss: bad args");

   const zz_pXModulus& p = zz_pE::modulus();


   UniqueArray<vec_zz_pX> M_store;
   M_store.SetLength(n);
   vec_zz_pX *M = M_store.get();

   for (i = 0; i < n; i++) {
      M[i].SetLength(m);
      for (j = 0; j < m; j++) {
         M[i][j].rep.SetMaxLength(2*deg(p)-1);
         M[i][j] = rep(M_in[i][j]);
      }
   }

   l = 0;
   for (k = 0; k < w && l < n; k++) {

      pos = -1;
      for (i = l; i < n; i++) {
         rem(t1, M[i][k], p);
         M[i][k] = t1;
         if (pos == -1 && !IsZero(t1)) {
            pos = i;
         }
      }

      if (pos != -1) {
         swap(M[pos], M[l]);

         InvMod(t3, M[l][k], p);
         negate(t3, t3);

         for (j = k+1; j < m; j++) {
            rem(M[l][j], M[l][j], p);
         }

         for (i = l+1; i < n; i++) {
            // M[i] = M[i] + M[l]*M[i,k]*t3

            MulMod(t1, M[i][k], t3, p);

            clear(M[i][k]);

            x = M[i].elts() + (k+1);
            y = M[l].elts() + (k+1);

            for (j = k+1; j < m; j++, x++, y++) {
               // *x = *x + (*y)*t1

               mul(t2, *y, t1);
               add(t2, t2, *x);
               *x = t2;
            }
         }

         l++;
      }
   }
   
   for (i = 0; i < n; i++)
      for (j = 0; j < m; j++)
         conv(M_in[i][j], M[i][j]);

   return l;
}
开发者ID:kenjinote,项目名称:NTLSample,代码行数:80,代码来源:mat_lzz_pE.cpp

示例2: determinant

void determinant(zz_pE& d, const mat_zz_pE& M_in)
{
   long k, n;
   long i, j;
   long pos;
   zz_pX t1, t2;
   zz_pX *x, *y;

   const zz_pXModulus& p = zz_pE::modulus();

   n = M_in.NumRows();

   if (M_in.NumCols() != n)
      LogicError("determinant: nonsquare matrix");

   if (n == 0) {
      set(d);
      return;
   }


   UniqueArray<vec_zz_pX> M_store;
   M_store.SetLength(n);
   vec_zz_pX *M = M_store.get();

   for (i = 0; i < n; i++) {
      M[i].SetLength(n);
      for (j = 0; j < n; j++) {
         M[i][j].rep.SetMaxLength(2*deg(p)-1);
         M[i][j] = rep(M_in[i][j]);
      }
   }

   zz_pX det;
   set(det);

   for (k = 0; k < n; k++) {
      pos = -1;
      for (i = k; i < n; i++) {
         rem(t1, M[i][k], p);
         M[i][k] = t1;
         if (pos == -1 && !IsZero(t1))
            pos = i;
      }

      if (pos != -1) {
         if (k != pos) {
            swap(M[pos], M[k]);
            negate(det, det);
         }

         MulMod(det, det, M[k][k], p);

         // make M[k, k] == -1 mod p, and make row k reduced

         InvMod(t1, M[k][k], p);
         negate(t1, t1);
         for (j = k+1; j < n; j++) {
            rem(t2, M[k][j], p);
            MulMod(M[k][j], t2, t1, p);
         }

         for (i = k+1; i < n; i++) {
            // M[i] = M[i] + M[k]*M[i,k]

            t1 = M[i][k];   // this is already reduced

            x = M[i].elts() + (k+1);
            y = M[k].elts() + (k+1);

            for (j = k+1; j < n; j++, x++, y++) {
               // *x = *x + (*y)*t1

               mul(t2, *y, t1);
               add(*x, *x, t2);
            }
         }
      }
      else {
         clear(d);
         return;
      }
   }

   conv(d, det);
}
开发者ID:kenjinote,项目名称:NTLSample,代码行数:86,代码来源:mat_lzz_pE.cpp

示例3: inv

void inv(zz_pE& d, mat_zz_pE& X, const mat_zz_pE& A)
{
   long n = A.NumRows();
   if (A.NumCols() != n)
      LogicError("inv: nonsquare matrix");

   if (n == 0) {
      set(d);
      X.SetDims(0, 0);
      return;
   }

   long i, j, k, pos;
   zz_pX t1, t2;
   zz_pX *x, *y;

   const zz_pXModulus& p = zz_pE::modulus();


   UniqueArray<vec_zz_pX> M_store;
   M_store.SetLength(n);
   vec_zz_pX *M = M_store.get();

   for (i = 0; i < n; i++) {
      M[i].SetLength(2*n);
      for (j = 0; j < n; j++) {
         M[i][j].rep.SetMaxLength(2*deg(p)-1);
         M[i][j] = rep(A[i][j]);
         M[i][n+j].rep.SetMaxLength(2*deg(p)-1);
         clear(M[i][n+j]);
      }
      set(M[i][n+i]);
   }

   zz_pX det;
   set(det);

   for (k = 0; k < n; k++) {
      pos = -1;
      for (i = k; i < n; i++) {
         rem(t1, M[i][k], p);
         M[i][k] = t1;
         if (pos == -1 && !IsZero(t1)) {
            pos = i;
         }
      }

      if (pos != -1) {
         if (k != pos) {
            swap(M[pos], M[k]);
            negate(det, det);
         }

         MulMod(det, det, M[k][k], p);

         // make M[k, k] == -1 mod p, and make row k reduced

         InvMod(t1, M[k][k], p);
         negate(t1, t1);
         for (j = k+1; j < 2*n; j++) {
            rem(t2, M[k][j], p);
            MulMod(M[k][j], t2, t1, p);
         }

         for (i = k+1; i < n; i++) {
            // M[i] = M[i] + M[k]*M[i,k]

            t1 = M[i][k];   // this is already reduced

            x = M[i].elts() + (k+1);
            y = M[k].elts() + (k+1);

            for (j = k+1; j < 2*n; j++, x++, y++) {
               // *x = *x + (*y)*t1

               mul(t2, *y, t1);
               add(*x, *x, t2);
            }
         }
      }
      else {
         clear(d);
         return;
      }
   }

   X.SetDims(n, n);
   for (k = 0; k < n; k++) {
      for (i = n-1; i >= 0; i--) {
         clear(t1);
         for (j = i+1; j < n; j++) {
            mul(t2, rep(X[j][k]), M[i][j]);
            add(t1, t1, t2);
         }
         sub(t1, t1, M[i][n+k]);
         conv(X[i][k], t1);
      }
   }

   conv(d, det);
//.........这里部分代码省略.........
开发者ID:kenjinote,项目名称:NTLSample,代码行数:101,代码来源:mat_lzz_pE.cpp

示例4: ppsolve

// prime power solver
// zz_p::modulus() is assumed to be p^r, for p prime, r >= 1
// A is an n x n matrix, b is a length n (row) vector,
// and a solution for the matrix-vector equation x A = b is found.
// If A is not inverible mod p, then error is raised.
void ppsolve(vec_zz_pE& x, const mat_zz_pE& A, const vec_zz_pE& b,
             long p, long r) 
{

   if (r == 1) {
      zz_pE det;
      solve(det, x, A, b);
      if (det == 0) Error("ppsolve: matrix not invertible");
      return;
   }

   long n = A.NumRows();
   if (n != A.NumCols()) 
      Error("ppsolve: matrix not square");
   if (n == 0)
      Error("ppsolve: matrix of dimension 0");

   zz_pContext pr_context;
   pr_context.save();

   zz_pEContext prE_context;
   prE_context.save();

   zz_pX G = zz_pE::modulus();

   ZZX GG = to_ZZX(G);

   vector< vector<ZZX> > AA;
   convert(AA, A);

   vector<ZZX> bb;
   convert(bb, b);

   zz_pContext p_context(p);
   p_context.restore();

   zz_pX G1 = to_zz_pX(GG);
   zz_pEContext pE_context(G1);
   pE_context.restore();

   // we are now working mod p...

   // invert A mod p

   mat_zz_pE A1;
   convert(A1, AA);

   mat_zz_pE I1;
   zz_pE det;

   inv(det, I1, A1);
   if (det == 0) {
      Error("ppsolve: matrix not invertible");
   }

   vec_zz_pE b1;
   convert(b1, bb);

   vec_zz_pE y1;
   y1 = b1 * I1;

   vector<ZZX> yy;
   convert(yy, y1);

   // yy is a solution mod p

   for (long k = 1; k < r; k++) {
      // lift solution yy mod p^k to a solution mod p^{k+1}

      pr_context.restore();
      prE_context.restore();
      // we are now working mod p^r

      vec_zz_pE d, y;
      convert(y, yy);

      d = b - y * A;

      vector<ZZX> dd;
      convert(dd, d);

      long pk = power_long(p, k);
      vector<ZZX> ee;
      div(ee, dd, pk);

      p_context.restore();
      pE_context.restore();

      // we are now working mod p

      vec_zz_pE e1;
      convert(e1, ee);
      vec_zz_pE z1;
      z1 = e1 * I1;

//.........这里部分代码省略.........
开发者ID:JeffMuchine,项目名称:HElib,代码行数:101,代码来源:NumbTh.cpp


注:本文中的mat_zz_pE::NumRows方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。