当前位置: 首页>>代码示例>>C++>>正文


C++ mat::is_finite方法代码示例

本文整理汇总了C++中mat::is_finite方法的典型用法代码示例。如果您正苦于以下问题:C++ mat::is_finite方法的具体用法?C++ mat::is_finite怎么用?C++ mat::is_finite使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mat的用法示例。


在下文中一共展示了mat::is_finite方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: mse

double mse(const mat & A, const mat & W, const mat & H, const mat & W1, const mat & H2)
{
	// compute mean square error of A and fixed A
	const int k = W.n_cols - H2.n_cols;

	mat Adiff = A;
	Adiff -= W.cols(0, k-1) * H.cols(0, k-1).t();
	if (!W1.empty())
		Adiff -= W1*H.cols(k, H.n_cols-1).t();
	if (!H2.empty())
		Adiff -= W.cols(k, W.n_cols-1)*H2.t();

	if (A.is_finite())
		return mean(mean(square(Adiff)));
	else
		return mean(square(Adiff.elem(find_finite(Adiff))));
}
开发者ID:n7wilson,项目名称:NNLM,代码行数:17,代码来源:nnls_solver.cpp

示例2: GRASTA_training

void GRASTA_training(const mat &D,
        mat &Uhat,
        struct STATUS &status,
        const struct GRASTA_OPT &options,
        mat &W,
        mat &Outlier
        )
{
    int rows, cols;
    rows = D.n_rows; cols = D.n_cols;
    
    if ( !status.init ){
        status.init         = 1;
        status.curr_iter    = 0;
        
        status.last_mu      = options.MIN_MU;
        status.level        = 0;
        status.step_scale   = 0.0;
        status.last_w       = zeros(options.RANK, 1);
        status.last_gamma   = zeros(options.DIM, 1);        
        
        if (!Uhat.is_finite()){
            Uhat = orth(randn(options.DIM, options.RANK));        
        }
    }
    
    Outlier      = zeros<mat>(rows, cols);
    W            = zeros<mat>(options.RANK, cols);
    
    mat         U_Omega, y_Omega, y_t, s, w, dual, gt;
    uvec        idx, col_order;
    ADMM_OPT    admm_opt;
    double      SCALE, t, rel;
    bool        bRet;
    
    admm_opt.lambda = options.lambda;
    //if (!options.QUIET) 
    int maxIter = options.maxCycles * cols; // 20 passes through the data set
    status.hist_rel.reserve( maxIter);
                
    // Order of examples to process
    arma_rng::set_seed_random();
    col_order = conv_to<uvec>::from(floor(cols*randu(maxIter, 1)));
    
    for (int k=0; k<maxIter; k++){
        int iCol = col_order(k);
        //PRINTF("%d / %d\n",iCol, cols);
        
        y_t     = D.col(iCol);
        idx     = find_finite(y_t);
                
        y_Omega = y_t.elem(idx);
        
        SCALE = norm(y_Omega);
        y_Omega = y_Omega/SCALE;
        
        // the following for-loop is for U_Omega = U(idx,:) in matlab
        U_Omega = zeros<mat>(idx.n_elem, Uhat.n_cols);
        for (int i=0; i<idx.n_elem; i++)
            U_Omega.row(i) = Uhat.row(idx(i));
        
        // solve L-1 regression
        admm_opt.MAX_ITER = options.MAX_ITER;
        
        if (options.NORM_TYPE == L1_NORM)
            bRet = ADMM_L1(U_Omega, y_Omega, admm_opt, s, w, dual);
        else if (options.NORM_TYPE == L21_NORM){
            w = solve(U_Omega, y_Omega);
            s = y_Omega - U_Omega*w;
            dual = -s/norm(s, 2);
        }
        else {
            PRINTF("Error: norm type does not support!\n");
            return;
        }
        
        vec tmp_col = zeros<vec>(rows);
        tmp_col.elem(idx) = SCALE * s;
        
        Outlier.col(iCol) = tmp_col;
        
        W.col(iCol) =  SCALE * w;

        // take gradient step over Grassmannian
        t = GRASTA_update(Uhat, status, w, dual, idx, options);
        
        if (!options.QUIET){
            rel = subspace(options.GT_mat, Uhat);
            status.hist_rel.push_back(rel);
            
            if (rel < options.TOL){
                PRINTF("%d/%d: subspace angle %.2e\n",k,maxIter, rel);
                break;
            }
        }
        
        if (k % cols ==0){
            
            if (!options.QUIET) PRINTF("Pass %d/%d: step-size %.2e, level %d, last mu %.2f\n",
                    k % cols, options.maxCycles, t, status.level, status.last_mu);
//.........这里部分代码省略.........
开发者ID:Pei-jie,项目名称:grasta_mex,代码行数:101,代码来源:grasta.cpp

示例3: nnmf

//[[Rcpp::export]]
Rcpp::List nnmf(const mat & A, const unsigned int k, mat W, mat H, umat Wm, umat Hm,
	const vec & alpha, const vec & beta, const unsigned int max_iter, const double rel_tol, 
	const int n_threads, const int verbose, const bool show_warning, const unsigned int inner_max_iter, 
	const double inner_rel_tol, const int method, unsigned int trace)
{
	/******************************************************************************************************
	 *              Non-negative Matrix Factorization(NNMF) using alternating scheme
	 *              ----------------------------------------------------------------
	 * Description:
	 * 	Decompose matrix A such that
	 * 		A = W H
	 * Arguments:
	 * 	A              : Matrix to be decomposed
	 * 	W, H           : Initial matrices of W and H, where ncol(W) = nrow(H) = k. # of rows/columns of W/H could be 0
	 * 	Wm, Hm         : Masks of W and H, s.t. masked entries are no-updated and fixed to initial values
	 * 	alpha          : [L2, angle, L1] regularization on W (non-masked entries)
	 * 	beta           : [L2, angle, L1] regularization on H (non-masked entries)
	 * 	max_iter       : Maximum number of iteration
	 * 	rel_tol        : Relative tolerance between two successive iterations, = |e2-e1|/avg(e1, e2)
	 * 	n_threads      : Number of threads (openMP)
	 * 	verbose        : Either 0 = no any tracking, 1 == progression bar, 2 == print iteration info
	 * 	show_warning   : If to show warning if targeted `tol` is not reached
	 * 	inner_max_iter : Maximum number of iterations passed to each inner W or H matrix updating loop
	 * 	inner_rel_tol  : Relative tolerance passed to inner W or H matrix updating loop, = |e2-e1|/avg(e1, e2)
	 * 	method         : Integer of 1, 2, 3 or 4, which encodes methods
	 * 	               : 1 = sequential coordinate-wise minimization using square loss
	 * 	               : 2 = Lee's multiplicative update with square loss, which is re-scaled gradient descent
	 * 	               : 3 = sequentially quadratic approximated minimization with KL-divergence
	 * 	               : 4 = Lee's multiplicative update with KL-divergence, which is re-scaled gradient descent
	 * 	trace          : A positive integer, error will be checked very 'trace' iterations. Computing WH can be very expansive,
	 * 	               : so one may not want to check error A-WH every single iteration
	 * Return:
	 * 	A list (Rcpp::List) of 
	 * 		W, H          : resulting W and H matrices
	 * 		mse_error     : a vector of mean square error (divided by number of non-missings)
	 * 		mkl_error     : a vector (length = number of iterations) of mean KL-distance
	 * 		target_error  : a vector of loss (0.5*mse or mkl), plus constraints
	 * 		average_epoch : a vector of average epochs (one complete swap over W and H)
	 * Author:
	 * 	Eric Xihui Lin <[email protected]>
	 * Version:
	 * 	2015-12-11
	 ******************************************************************************************************/

	unsigned int n = A.n_rows;
	unsigned int m = A.n_cols;
	//int k = H.n_rows; // decomposition rank k
	unsigned int N_non_missing = n*m;

	if (trace < 1) trace = 1;
	unsigned int err_len = (unsigned int)std::ceil(double(max_iter)/double(trace)) + 1;
	vec mse_err(err_len), mkl_err(err_len), terr(err_len), ave_epoch(err_len);

	// check progression
	bool show_progress = false;
	if (verbose == 1) show_progress = true;
	Progress prgrss(max_iter, show_progress);

	double rel_err = rel_tol + 1;
	double terr_last = 1e99;
	uvec non_missing;
	bool any_missing = !A.is_finite();
	if (any_missing) 
	{
		non_missing = find_finite(A);
		N_non_missing = non_missing.n_elem;
		mkl_err.fill(mean((A.elem(non_missing)+TINY_NUM) % log(A.elem(non_missing)+TINY_NUM) - A.elem(non_missing)));
	}
	else
		mkl_err.fill(mean(mean((A+TINY_NUM) % log(A+TINY_NUM) - A))); // fixed part in KL-dist, mean(A log(A) - A)

	if (Wm.empty())
		Wm.resize(0, n);
	else
		inplace_trans(Wm);
	if (Hm.empty())
		Hm.resize(0, m);

	if (W.empty())
	{
		W.randu(k, n);
		W *= 0.01;
		if (!Wm.empty())
			W.elem(find(Wm > 0)).fill(0.0);
	}
	else
		inplace_trans(W);

	if (H.empty())
	{
		H.randu(k, m);
		H *= 0.01;
		if (!Hm.empty())
			H.elem(find(Hm > 0)).fill(0.0);
	}

	if (verbose == 2)
	{
		Rprintf("\n%10s | %10s | %10s | %10s | %10s\n", "Iteration", "MSE", "MKL", "Target", "Rel. Err.");
//.........这里部分代码省略.........
开发者ID:tomwenseleers,项目名称:NNLM,代码行数:101,代码来源:nnmf.cpp


注:本文中的mat::is_finite方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。