本文整理汇总了C++中lst::begin方法的典型用法代码示例。如果您正苦于以下问题:C++ lst::begin方法的具体用法?C++ lst::begin怎么用?C++ lst::begin使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lst
的用法示例。
在下文中一共展示了lst::begin方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: UF
UFXmap UF(lst k_lst,lst p_lst,lst subs_lst, unsigned int displacement )
{
/// constructing expr Xi*Pi
ex fprop = 0;
ex sDtmp;
string str;
lst xp;
for(lst::const_iterator it = p_lst.begin();it!=p_lst.end();++it)
{
str = "x_" + boost::lexical_cast<string>(displacement+std::distance(p_lst.begin(),it));
xp.append(get_symbol(str)); // storing list of X identities
fprop += get_symbol(str) * (*it);
}
fprop = fprop.expand();
sDtmp = fprop;
//cout<<fprop<<endl;
matrix M(k_lst.nops(),k_lst.nops());
matrix Q(k_lst.nops(),1);//column
GiNaC::numeric half(1,2);
for(lst::const_iterator itr = k_lst.begin();itr!=k_lst.end();++itr)
for(lst::const_iterator itc = itr;itc!=k_lst.end();++itc)
if(itr == itc)
{
M(distance(k_lst.begin(),itr),distance(k_lst.begin(),itc)) = -1*fprop.coeff((*itr)*(*itc),1);
//cout<<(*itr)*(*itc)<<"M("<<distance(k_lst.begin(),itr)<<","<<distance( k_lst.begin(),itc)<<") coeff "<<fprop.coeff((*itr)*(*itc),1)<<endl;
sDtmp -= (*itr)*(*itc)*fprop.coeff((*itr)*(*itc),1);
}
else
{
M(distance(k_lst.begin(),itr),distance( k_lst.begin(),itc)) = -1*half*fprop.coeff((*itr),1).coeff((*itc),1);
M(distance(k_lst.begin(),itc),distance(k_lst.begin(),itr)) = -1*half*fprop.coeff((*itr),1).coeff((*itc),1);
//cout<<(*itr)*(*itc)<<"M("<<distance( k_lst.begin(),itr)<<","<<distance( k_lst.begin(),itc)<<") coeff "<<fprop.coeff((*itr),1).coeff((*itc),1)<<endl;
sDtmp -= (*itr)*(*itc)*fprop.coeff((*itr),1).coeff((*itc),1);
}
cout<<"M: "<<M<<endl;
sDtmp = sDtmp.expand();
//cout<<"Expr linear on external momentum: "<<sDtmp.expand()<<endl;
for(lst::const_iterator itr = k_lst.begin();itr!=k_lst.end();++itr)
{
Q(distance( k_lst.begin(),itr),0) = half*sDtmp.coeff((*itr),1);
sDtmp -= (*itr)*sDtmp.coeff((*itr),1);
}
// cout<<"Q: "<<Q<<endl;
sDtmp = sDtmp.expand();
ex minusJ = sDtmp;
cout<<"-J: "<<minusJ<<endl;
ex U = M.determinant();
ex F = expand(M.determinant()*(minusJ+Q.transpose().mul(M.inverse()).mul(Q)(0,0)));
lst lp;
F=F.normal();
cout<<"U= "<<U<<endl<<"F= "<<F<<endl;
// cout<<"pol_list "<<lp<<endl;
U=U.subs(subs_lst,subs_options::algebraic);
F=F.subs(subs_lst,subs_options::algebraic);
cout<<"ALGEBRAIC: U= "<<U<<endl<<"F= "<<F<<endl;
// cout<<"UF_WORK"<<endl;
return fusion::make_map<UFX::U,UFX::F,UFX::xlst>(U,F,xp);
}
示例2: zero_volume
bool zero_volume(const lst& pole_list,const lst& w_list)
{
try{
using namespace lemon;
GlpkLp lp;
exhashmap<LpBase::Col> col_map;
for(lst::const_iterator wi = w_list.begin();wi!=w_list.end();++wi)
{
col_map[*wi] = lp.addCol();
}
for(lst::const_iterator pit = pole_list.begin();pit!= pole_list.end();++pit)
{
ex tmp_expr = *pit;
Lp::Expr constr_expr;
for(lst::const_iterator wi = w_list.begin();wi!=w_list.end();++wi)
{
ex wi_coeff = tmp_expr.coeff(*wi);
tmp_expr-=(*wi)*wi_coeff;
if(is_a<numeric>(wi_coeff))
constr_expr+=ex_to<numeric>(wi_coeff).to_double()*col_map[*wi];
else throw std::logic_error(std::string("Non numeric coefficient in pole term. "));
}
if(is_a<numeric>(tmp_expr))
lp.addRow(-ex_to<numeric>(tmp_expr).to_double(),constr_expr,Lp::INF);
else
{
cout<< tmp_expr<<endl;
throw std::logic_error(std::string("Lower bound is not a numeric"));
}
}
double l_bound,u_bound;
for(lst::const_iterator wi = w_list.begin();wi!=w_list.end();++wi)
{
lp.min();
lp.obj(col_map[*wi]);
lp.solve();
if (lp.primalType() == Lp::OPTIMAL)
l_bound = lp.primal();
else return true;
lp.max();
lp.obj(col_map[*wi]);
lp.solve();
if (lp.primalType() == Lp::OPTIMAL)
u_bound = lp.primal();
else return true;
cout<<"ub: "<<u_bound<<" lb: "<<l_bound<<endl;
if((u_bound - l_bound) <= 0)
return true;
}
return false;
}catch(std::exception &p)
{
throw std::logic_error(std::string("In function \"zero_volume\":\n |___> ")+p.what());
}
}
示例3: delay_vars
//
// Replace each var in e with delay(var,lag).
//
ex delay_vars(const ex& e, const ex& lag, const lst& vars)
{
ex g = e;
for (lst::const_iterator i = vars.begin(); i != vars.end(); ++i) {
g = g.subs(*i == delay(*i, lag));
}
return g;
}
示例4: lst2set
exset lst2set(const lst & l) {
exset s;
lst::const_iterator it = l.begin();
while (it != l.end()) {
s.insert(*it);
++it;
}
return s;
}
示例5: subs
/** Substitute objects in an expression (syntactic substitution) and return
* the result as a new expression. */
ex ex::subs(const lst & ls, const lst & lr, unsigned options) const
{
GINAC_ASSERT(ls.nops() == lr.nops());
// Convert the lists to a map
exmap m;
for (lst::const_iterator its = ls.begin(), itr = lr.begin(); its != ls.end(); ++its, ++itr) {
m.insert(std::make_pair(*its, *itr));
// Search for products and powers in the expressions to be substituted
// (for an optimization in expairseq::subs())
if (is_exactly_a<mul>(*its) || is_exactly_a<power>(*its))
options |= subs_options::pattern_is_product;
}
if (!(options & subs_options::pattern_is_product))
options |= subs_options::pattern_is_not_product;
return bp->subs(m, options);
}
示例6: to_nested_tuple
//
// Merge the expressions in exprs and formulas into a single expression.
// They are "merged" using the equality relation. That is, if
// exprs = {e1, e2, e3} and formulas = {f1, f2}, the result is
// e1 == (e2 == (e3 == (f1 == f2)))
// Using == as the operator is just for convenience. Any binary operation
// that does not occur in the expressions could have been used.
//
ex to_nested_tuple(const lst& exprs, const lst& formulas)
{
lst all;
for (lst::const_iterator iter = exprs.begin(); iter != exprs.end(); ++iter) {
all.append(*iter);
}
for (lst::const_iterator iter = formulas.begin(); iter != formulas.end(); ++iter) {
all.append(*iter);
}
int n = all.nops();
assert(n != 0);
if (n == 1) {
return all.op(0);
}
ex t = all.op(n-2) == all.op(n-1);
for (int k = n - 3; k >= 0; --k) {
t = all.op(k) == t;
}
return t;
}
示例7: CloseContext
void CloseContext(void)
{
if (initialized) {
for (lst::iterator i= MyHandleList.begin(); i != MyHandleList.end(); i++) {
ThreadData* Tmp = *i;
Tmp->thread_running = false;
}
Sleep(100);
zmq_ctx_destroy (context);
initialized = false;
}
}
示例8: logic_error
std::pair<ex,ex> hyper_cube_den(lst pole_list,lst w_list, ex den)
{
try
{
using namespace lemon;
GlpkLp lp;
exhashmap<LpBase::Col> col_map;
for(lst::const_iterator wi = w_list.begin();wi!=w_list.end();++wi)
{
col_map[*wi] = lp.addCol();
}
for(lst::const_iterator pit = pole_list.begin();pit!= pole_list.end();++pit)
{
ex tmp_expr = *pit;
// cout<<"Expr: "<<*pit<<" subexprs:"<<endl;
Lp::Expr constr_expr;
for(lst::const_iterator wi = w_list.begin();wi!=w_list.end();++wi)
{
// cout<<*wi<<" coeff "<<tmp_expr.coeff(*wi)<<endl;
ex wi_coeff = tmp_expr.coeff(*wi);
tmp_expr-=(*wi)*wi_coeff;
if(is_a<numeric>(wi_coeff))
{
constr_expr+=ex_to<numeric>(wi_coeff).to_double()*col_map[*wi];
// cout<<ex_to<numeric>(wi_coeff).to_double()<<endl;
}
else throw std::logic_error("Non numeric coefficient in pole term. ");
}
//constr_expr+=
//cout<<"Ostatok "<<tmp_expr<<endl;
if(is_a<numeric>(tmp_expr))
lp.addRow(-ex_to<numeric>(tmp_expr).to_double(),constr_expr,Lp::INF);
else throw std::logic_error(std::string("Lower bound is not a numeric"));
}
double l_bound,r_bound;
cout<<"Hyper cube"<<endl;
// for(lst::const_iterator wi = w_list.begin();wi!=w_list.end();++wi)
lp.min();
lp.obj(col_map[*w_list.begin()]);
// Solve the problem using the underlying LP solver
lp.solve();
if (lp.primalType() == Lp::OPTIMAL)
{
cout<<*w_list.begin()<<" = ("<<lp.primal()<<",";
l_bound = lp.primal();
}
else throw std::logic_error("Optimal solution not found.");
lp.max();
lp.obj(col_map[*w_list.begin()]);
// Solve the problem using the underlying LP solver
lp.solve();
if (lp.primalType() == Lp::OPTIMAL)
{
cout<<lp.primal()<<")"<<endl;
r_bound = lp.primal();
}
else throw std::logic_error("Optimal solution not found.");
cout<<"Simplex : "<<endl;
ex lbs,ubs;
// bool founds;
// tie(lbs,ubs,founds) = simplex_ara(pole_list,w_list,*w_list.begin());
// cout<<"lbs: "<<lbs<<" ubs: "<<ubs<<endl;
// boost::mt19937 rng;
// boost::uniform_real<> bounded_distribution(l_bound,r_bound); // distribution that maps to 1..6
// see random number distributions
// boost::variate_generator<boost::mt19937&, boost::uniform_real<> >
// die(rng, bounded_distribution); // glues randomness with mapping
//rng.seed(static_cast<unsigned char>(std::time(0)));
// double x = die(); // simulate rolling a die
// new edition in center of interval no random
//if((l_bound - trunc(l_bound)) < 10e-8) lbs = trunc(l_bound);
//lbs = ginac_set_d(l_bound);
lbs = l_bound;
//if((r_bound - trunc(r_bound)) < 10e-8) ubs = trunc(r_bound);
//ubs = ginac_set_d(r_bound);
ubs = r_bound;
//cout<<"ginac_set_d "<<ginac_set_d(l_bound)<<" "<<ginac_set_d(r_bound)<<endl;
ex x_half = lbs*(1- pow(den,-1)) + ubs*pow(den,-1);
// double real_half = (r_bound + l_bound)/2.0;
// cout<<"Point "<<die()<<" "<<x<<endl;
return std::make_pair(*w_list.begin(),x_half);
}catch(std::exception &p)
{
throw std::logic_error(std::string("In function \"hyper_cube_den\":\n |___> ")+p.what());
}
}
示例9: MBlbl_int
/**
*
* loop momentums,propagator expressions,
* invariants substitutions,propagator powers,number of loops
*
\param k_lst loop momentums list
\param p_lst propagator expressions list
\param subs_lst invariants substitutions list
\param nu propagator powers list
\param l number of loops
\return
*
*/
RoMB_loop_by_loop:: RoMB_loop_by_loop(
lst k_lst,
lst p_lst,
lst subs_lst,
lst nu,
bool subs_U
)
{
try
{
/*
empty integral
*/
MBintegral MBlbl_int(lst(),lst(),1);
/*
Full set of unused propagators, will change
*/
exlist input_prop_set;//( p_lst.begin(),p_lst.end());
/*
map for propagator powers
*/
exmap prop_pow_map;
for(lst::const_iterator Pit = p_lst.begin(); Pit != p_lst.end(); ++Pit)
{
input_prop_set.push_back(Pit->expand());
prop_pow_map[Pit->expand()] = nu.op(std::distance(p_lst.begin(),Pit));
}
cout<<"INPSET: "<<input_prop_set<<endl;
/*
Iterate over momentums k1,k2,k3,etc.
*/
unsigned int displacement_x = 0;
unsigned int displacement_w = 0;
for(lst::const_iterator kit = k_lst.begin(); kit != k_lst.end(); ++kit)
{
// Integral Normalization coefficient
// MBlbl_int *= pow(I,k_lst.nops());
MBlbl_int *= 1/tgamma(1+get_symbol("eps"));
//MBlbl_int *= pow(Pi,2-get_symbol("eps"));
//MBlbl_int *= exp(Euler*get_symbol("eps"));
cout<<"PROP_POW_MAP "<<prop_pow_map<<endl;
/*
temporary set of propagators, with all momentum,except deleted
*/
exlist tmp_p_lst(input_prop_set.begin(), input_prop_set.end());
/*
temporary set of propagators, with KIT momentum
*/
lst P_with_k_lst;
BOOST_FOREACH(ex prop_tmp, tmp_p_lst)
{
if(prop_tmp.has(*kit))
{
P_with_k_lst.append(prop_tmp);
input_prop_set.remove(prop_tmp);
}
}
cout<< "Set wo k_i "<<input_prop_set<<endl;
cout<<" PWKlst "<<P_with_k_lst<<endl;
bool direct_formula_applied = false;
// if only one term in PWKLST use well known formulas
// [Smirnov A.1]
if(!direct_formula_applied && (P_with_k_lst.nops() == 1))
{
ex pr_t = P_with_k_lst.op(0);
ex nu_t = prop_pow_map[pr_t];
exmap repls;
BOOST_ASSERT_MSG(pr_t.match(-pow(*kit,2) + wild(2)),"ONE PROP");
if(pr_t.match(-pow(*kit,2) + wild(2),repls))cout<<"repls: "<<repls<<endl;
ex mass_tadpole = (tgamma(nu_t+get_symbol("eps")-2)/tgamma(nu_t)*pow(wild(2).subs(repls),-nu_t-get_symbol("eps")+2));
cout<<mass_tadpole<<endl;
MBlbl_int *= mass_tadpole;
MBlbl_int.add_pole(nu_t+get_symbol("eps")-2);
direct_formula_applied = true;
}
if(!direct_formula_applied && (P_with_k_lst.nops() == 2))
{
//TWO terms in PWK_LST, [Smirnov A.4]
exmap repls_tad;
if((P_with_k_lst.nops()==2) &&
(( (P_with_k_lst.op(0).match(-pow(*kit,2))) && (P_with_k_lst.op(1).match(-pow(*kit,2)+wild())))||
( (P_with_k_lst.op(1).match(-pow(*kit,2))) && (P_with_k_lst.op(0).match(-pow(*kit,2)+wild()))))
&& !wild().has(*kit)
//.........这里部分代码省略.........