当前位置: 首页>>代码示例>>C++>>正文


C++ ivector::at方法代码示例

本文整理汇总了C++中ivector::at方法的典型用法代码示例。如果您正苦于以下问题:C++ ivector::at方法的具体用法?C++ ivector::at怎么用?C++ ivector::at使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ivector的用法示例。


在下文中一共展示了ivector::at方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: computeErrorNorm

  bool MLP::computeErrorNorm(const ivector& ids) {

    dvector vct(outputs,off*ids.size());

    const double fix=on-off;
    int i;
    double tmp,tmp2,v;

    // compute first the average outputs for the training set

    for (i=0;i<ids.size();++i) {
      vct.at(ids.at(i))+=fix;
    }

    vct.divide(ids.size());
    double offError(0.0);

    // now compute the error
    for (i=0;i<vct.size();++i) {
      tmp = off - vct.at(i);
      offError += (tmp*tmp);
    }

    errorNorm = 0.0;
    for (i=0;i<ids.size();++i) {
      v = vct.at(ids.at(i));
      tmp  = off - v;
      tmp2 = on  - v;
      errorNorm += (offError - tmp*tmp + tmp2*tmp2);
    }
    errorNorm *= 0.5;

    return true;
  }
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:34,代码来源:ltiMLP.cpp

示例2: getMostLabel

  //get most(best) available label from histogram
  int kNearestNeighFilter::getMostLabel(const ivector& histogram,
			       const imatrix& src,
			       const int& row, const int& col) const{

    int numOfMax = 0;
    int maxIndex = -1; // first index, which is max
    int max = 0; //
    for(int i=0;i<histoSize;++i) {
      if(histogram.at(i) < max); // for speed up (probability)
      else if(histogram.at(i) > max) {
	max = histogram.at(i);
	numOfMax = 1;
	maxIndex = i;
      }
      else //if(histogram.at(i) == max)
	++numOfMax;
    }

    //is there more than one possibility ?
    if (numOfMax == 1)
      return maxIndex;
    // is the kernel center one of the max's?
    else if(histogram.at(src.at(row,col)) == max)
      return src.at(row,col);
    else
      return getMedian(histogram,max,numOfMax);
  };
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:28,代码来源:ltiKNearestNeighFilter.cpp

示例3: calcGradient

  bool MLP::calcGradient(const dmatrix& inputs,
                         const ivector& ids,
                         dvector& grad) {

    if (inputs.rows() != ids.size()) {
      setStatusString("Number of vectors not consistent with number of ids");
      return false;
    }

    dvector tmp;
    int i;
    double tmpError;

    totalError = 0;
    calcGradient(inputs.getRow(0),ids.at(0),grad);
    computeActualError(ids.at(0),totalError);

    for (i=1;i<inputs.rows();++i) {
      calcGradient(inputs.getRow(i),ids.at(i),tmp);
      computeActualError(ids.at(i),tmpError);
      grad.add(tmp);
      totalError+=tmpError;
    }

    return true;
  }
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:26,代码来源:ltiMLP.cpp

示例4: histogramMethodMiddle

  // the kernel runs inside the image
  void kNearestNeighFilter::histogramMethodMiddle(const imatrix& src,
                                              imatrix& dest,
                                              ivector& histogram,
                                              const int& row,int& col) const {
    int i,j;//index
    int numOfMax, maxIndex;
    int max=0;
    const int maxChange = sizeOfKernel+1;//max change for "max"

    const int limit = sizeOfKernel/2;   //half size of the kernel
    const int lastCol = src.lastColumn()-limit;
    const int r = row+limit;
    col = limit;

    int v; //del test
    while(col <= (lastCol-1)) {
      j = col-limit;
      // sub labels left form the kernel
      for(i=row-limit;i<=r;++i) {
        --histogram.at(src.at(i,j));
      }
      // add labels right from the kernel
      ++col;
      j = col+limit;
      for(i=row-limit;i<=r;++i) {
	v = src.at(i,j);
        ++histogram.at(src.at(i,j));
      }

      //get most(best) available label
      numOfMax = 0;
      maxIndex = -1;
      max -= maxChange; //=0;
      for(i=0;i<histoSize;++i) {
	if(histogram.at(i) < max);// for speed up (probability)
	else if(histogram.at(i) > max) {
	  max = histogram.at(i);
	  numOfMax = 1;
	  maxIndex = i;
	}
	else //if(histogram.at(i) == max)
	  ++numOfMax;
      }

      //is there more than one possibility ?
      if(numOfMax == 1)
	dest.at(row,col) =  maxIndex;
      // is the kernel center one of the max's?
      else if(histogram.at(src.at(row,col)) == max)
	dest.at(row,col) = src.at(row,col);
      else
	dest.at(row,col) = getMedian(histogram,max,numOfMax);
    }//while
  };
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:55,代码来源:ltiKNearestNeighFilter.cpp

示例5: buildIdMaps

  void svm::buildIdMaps(const ivector& ids) {
    int j=0;
    // create reverse id map
    idMap.clear();
    for (int i=0; i<ids.size(); i++) {
      if (idMap.find(ids.at(i)) == idMap.end()) {
      _lti_debug("Mapping external id " << ids.at(i) << " to " << j << std::endl);
        rIdMap[j]=ids.at(i);
        idMap[ids.at(i)]=j++;
      }
    }

    nClasses=j;
  }
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:14,代码来源:ltiSVM.cpp

示例6: checkHowManyOutputs

  void MLP::checkHowManyOutputs(const ivector& ids) {
    // count how many different ids are present in the training set
    std::map<int,int> extToInt;
    std::map<int,int>::iterator it;

    int i,k;
    for (i=0,k=0;i<ids.size();++i) {
      it = extToInt.find(ids.at(i));
      if (it == extToInt.end()) {
        extToInt[ids.at(i)] = k;
        ++k;
      }
    }

    outputs = extToInt.size();
  }
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:16,代码来源:ltiMLP.cpp

示例7: train

  // Calls the same method of the superclass.
  bool shClassifier::train(const dmatrix& input, const ivector& ids) {

    buildIdMaps(ids);

    boundsFunctor<double> bounds;
    const parameters& par=getParameters();

    dvector min,max;

    if (par.autoBounds) {
      bounds.boundsOfRows(input,min,max);
    } else {
      min=par.minimum;
      max=par.maximum;
    }

    _lti_debug("Binvector.size = " << par.binVector.size() << "\n");

    int i;

    // build one histogram per object
    models.resize(nClasses);
    for (i=0; i<nClasses; i++) {
      if (par.binVector.size() == min.size()) {
        models[i]=new sparseHistogram(par.binVector,min,max);
      } else {
        models[i]=new sparseHistogram(par.numberOfBins,min,max);
      }
    }

    ivector sum(nClasses);

    // fill histograms
    for (i=0; i<input.rows(); i++) {
      int id=idMap[ids.at(i)];
      models[id]->add(input.getRow(i));
      sum[id]++;
    }

    // normalize histograms
    for (i=0; i<nClasses; i++) {
      _lti_debug("Sum of " << i << " is " << sum.at(i) << "\n");
      if (sum.at(i) == 0) {
        delete models[i];
        models[i]=0;
      } else {
        models[i]->divide(static_cast<float>(sum.at(i)));
      }
    }
    defineOutputTemplate();
    return true;
  }
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:53,代码来源:ltiSHClassifier.cpp

示例8: makeTargets

 void svm::makeTargets(const ivector& ids) {
   // expand each class label i to a vector v with v[j]=1 if j == i,
   // and j[j]=-1 if j != i
   srcIds=ids;
   dmatrix* t=new dmatrix(nClasses,ids.size(),-1.0);
   // iterate over training labels
   for (int i=0; i<t->columns(); i++) {
     t->at(idMap[ids.at(i)],i)=1;
   }
   if (target != 0) {
     delete target;
   }
   target=t;
 }
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:14,代码来源:ltiSVM.cpp

示例9: getMedian

  int kNearestNeighFilter::getMedian(const ivector& histogram,
                                     const int max,
                                     const int numOfMax) const {
    ivector vect(numOfMax,0);
    int i,z=0;
    const int size=histogram.size();
    for(i=0;i<size;++i) {
      if (histogram.at(i) == max) {
        vect.at(z++) = i;
      }
    }

    return vect.at(z/2);
  }
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:14,代码来源:ltiKNearestNeighFilter.cpp

示例10: computeTotalError

  /*
   * compute the error of the given weights for the whole training set.
   */
  bool MLP::computeTotalError(const std::vector<dmatrix>& mWeights,
                              const dmatrix& inputs,
                              const ivector& ids,
                              double& totalError) const {

    if (ids.size() != inputs.rows()) {
      return false;
    }

    const parameters& param = getParameters();
    const int layers = param.hiddenUnits.size()+1;
    std::vector<dvector> uNet(layers),uOut(layers);
    int i;
    double tmp;
    totalError=0.0;
    for (i=0;i<ids.size();++i) {
      propagate(inputs.getRow(i),mWeights,uNet,uOut);
      computePatternError(ids.at(i),uOut.back(),tmp);
      totalError+=tmp;
    }

    return true;
  }
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:26,代码来源:ltiMLP.cpp

示例11: trainSteepestSequential

  bool MLP::trainSteepestSequential(const dmatrix& data,
                                    const ivector& internalIds) {

    const parameters& param = getParameters();
    char buffer[256];
    bool abort = false;
    scramble<int> scrambler;
    int i,j,k;
    double tmpError;
    ivector idx;
    idx.resize(data.rows(),0,false,false);
    for (i=0;i<idx.size();++i) {
      idx.at(i)=i;
    }

    if (param.momentum > 0) {
      // with momentum
      dvector grad,delta(weights.size(),0.0);

      for (i=0; !abort && (i<param.maxNumberOfEpochs); ++i) {
        scrambler.apply(idx); // present the pattern in a random sequence
        totalError = 0;
        for (j=0;j<idx.size();++j) {
          k=idx.at(j);
          calcGradient(data.getRow(k),internalIds.at(k),grad);
          computeActualError(internalIds.at(k),tmpError);
          totalError+=tmpError;
          delta.addScaled(param.learnrate,grad,param.momentum,delta);
          weights.add(delta);
        }

        // update progress info object
        if (validProgressObject()) {
          sprintf(buffer,"Error=%f",totalError/errorNorm);
          getProgressObject().step(buffer);
          abort = abort || (totalError/errorNorm <= param.stopError);
          abort = abort || getProgressObject().breakRequested();
        }
      }
    } else {
      // without momentum
      ivector idx;
      idx.resize(data.rows(),0,false,false);
      dvector grad;

      int i,j,k;
      double tmpError;
      for (i=0;i<idx.size();++i) {
        idx.at(i)=i;
      }
      for (i=0; !abort && (i<param.maxNumberOfEpochs); ++i) {
        scrambler.apply(idx); // present the pattern in a random sequence
        totalError = 0;
        for (j=0;j<idx.size();++j) {
          k=idx.at(j);
          calcGradient(data.getRow(k),internalIds.at(k),grad);
          computeActualError(internalIds.at(k),tmpError);
          totalError+=tmpError;
          weights.addScaled(param.learnrate,grad);
        }

        // update progress info object
        if (validProgressObject()) {
          sprintf(buffer,"Error=%f",totalError/errorNorm);
          getProgressObject().step(buffer);
          abort = abort || (totalError/errorNorm <= param.stopError);
          abort = abort || getProgressObject().breakRequested();
        }
      }
    }
    return true;
  }
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:72,代码来源:ltiMLP.cpp

示例12: train

  // TODO: comment your train method
  bool MLP::train(const dvector& theWeights,
                  const dmatrix& data,
                  const ivector& ids) {

    if (data.empty()) {
      setStatusString("Train data empty");
      return false;
    }


    if (ids.size()!=data.rows()) {
      std::string str;
      str = "dimensionality of IDs vector and the number of rows ";
      str+= "of the input matrix must have the same size.";
      setStatusString(str.c_str());
      return false;
    }


    // tracks the status of the training process.
    // if an error occurs set to false and use setStatusString()
    // however, training should continue, fixing the error as well as possible
    bool b=true;

    // vector with internal ids
    ivector newIds,idsLUT;
    newIds.resize(ids.size(),0,false,false);

    // map to get the internal Id to an external Id;
    std::map<int,int> extToInt;
    std::map<int,int>::iterator it;

    int i,k;
    for (i=0,k=0;i<ids.size();++i) {
      it = extToInt.find(ids.at(i));
      if (it != extToInt.end()) {
        newIds.at(i) = (*it).second;
      } else {
        extToInt[ids.at(i)] = k;
        newIds.at(i) = k;
        ++k;
      }
    }

    idsLUT.resize(extToInt.size());
    for (it=extToInt.begin();it!=extToInt.end();++it) {
      idsLUT.at((*it).second) = (*it).first;
    }

    // initialize the inputs and output units from the given data
    outputs = idsLUT.size();
    inputs  = data.columns();

    const parameters& param = getParameters();

    // display which kind of algorithm is to be used
    if (validProgressObject()) {
      getProgressObject().reset();
      std::string str("MLP: Training using ");
      switch(param.trainingMode) {
        case parameters::ConjugateGradients:
          str += "conjugate gradients";
          break;
        case parameters::SteepestDescent:
          str += "steepest descent";
          break;
        default:
          str += "unnamed method";
      }
      getProgressObject().setTitle(str);
      getProgressObject().setMaxSteps(param.maxNumberOfEpochs+1);
    }

    dvector grad;
    if (&theWeights != &weights) {
      weights.copy(theWeights);
    }

    if (!initWeights(true)) { // keep the weights
      setStatusString("Wrong weights!");
      return false;
    };

    computeErrorNorm(newIds);

    if (param.trainingMode == parameters::ConjugateGradients) {
      b = trainConjugateGradients(data,newIds);
    } else {
      if (param.batchMode) { // batch training mode:
        b = trainSteepestBatch(data,newIds);
      } else { // sequential training mode:
        b = trainSteepestSequential(data,newIds);
      }
    }

    if (validProgressObject()) {
      getProgressObject().step("Training ready.");
    }

//.........这里部分代码省略.........
开发者ID:mvancompernolle,项目名称:ai_project,代码行数:101,代码来源:ltiMLP.cpp


注:本文中的ivector::at方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。