本文整理汇总了C++中imageType_t类的典型用法代码示例。如果您正苦于以下问题:C++ imageType_t类的具体用法?C++ imageType_t怎么用?C++ imageType_t使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了imageType_t类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: image
//static
void GradientsBase::binarizeImage(imageType_t const & currentImage_p, realType_t dBlackPoint_p,
weightImageType_t & rMaskImage_p)
{
#if 0
imageType_t image(currentImage_p);
image.ResetSelections();
image.Binarize(dBlackPoint_p);
// first channel
image.ResetSelections();
image.SelectChannel(0);
rMaskImage_p.ResetSelections();
rMaskImage_p.Assign(image);
// compress into one channel
for(int i=1;i<image.NumberOfChannels();++i){
image.SelectChannel(i);
rMaskImage_p.Max(image);
}
#else
int const nCols=currentImage_p.Width();
int const nRows=currentImage_p.Height();
int const nChannels=currentImage_p.NumberOfChannels();
rMaskImage_p.AllocateData(nCols,nRows);
rMaskImage_p.Black();
for(int channel=0;channel<nChannels;++channel){
for(int row=0;row<nRows;++row){
for(int col=0;col<nCols;++col){
if(currentImage_p.Pixel(col,row,channel)>dBlackPoint_p) {
rMaskImage_p.Pixel(col,row)=1.0;
}
}
}
}
#endif
}
示例2: AssertImage
//static
void
GradientsHdrCompression::minMaxValImage(imageType_t const &rImage_p, realType_t &rdMin_p,realType_t &rdMax_p)
{
AssertImage(rImage_p);
rImage_p.ResetSelections();
rImage_p.GetExtremePixelValues(rdMin_p, rdMax_p);
}
示例3: averageImage
//static
void GradientsMergeMosaic::averageImage(pcl_enum eType_p,
weightImageType_t const &rCountImage_p,
imageType_t &rImage_p)
{
int const nCols=rImage_p.Width();
int const nRows=rImage_p.Height();
int const nChannels=rImage_p.NumberOfChannels();
switch(eType_p) {
// FIXME sure there must be a faster way to do this via masked ops?!?
case GradientsMergeMosaicType::Overlay:
// do nothing
break;
case GradientsMergeMosaicType::Average:
// FIXME use builtin PCL for this
for(int channel=0;channel<nChannels;++channel){
for(int row=0;row<nRows;++row){
for(int col=0;col<nCols;++col){
if(rCountImage_p.Pixel(col,row)>0.0){
rImage_p.Pixel(col,row,channel)/=static_cast<realType_t>(rCountImage_p.Pixel(col,row));
}
}
}
}
break;
default:
Assert(false);
}
}
示例4: Assert
void
GradientsBase::AssertColImage(imageType_t const &rImage_p)
{
Assert(rImage_p.Height()>2);
Assert(rImage_p.Width()>2);
Assert(rImage_p.NumberOfChannels()>=1);
}
示例5: clipGradients
//static
void GradientsHdrComposition::clipGradients(imageType_t &rImage_p)
{
for ( realType_t* f = rImage_p.PixelData(), * f1 = f + rImage_p.NumberOfPixels(); f != f1; ++f )
{
if ( std::abs(*f) > -MINLOGVALUE) {
*f = 0.0;
}
}
}
示例6: logImage
//static
void GradientsHdrComposition::logImage(imageType_t const & rCurrentImage_p,
imageType_t & rResultImage_p)
{
int const nCols=rCurrentImage_p.Width();
int const nRows=rCurrentImage_p.Height();
int const nChannels=rCurrentImage_p.NumberOfChannels();
imageType_t::color_space colorSpace=rCurrentImage_p.ColorSpace();
if (&rCurrentImage_p != &rResultImage_p){
rResultImage_p.AllocateData(nCols,nRows, nChannels, colorSpace);
}
for(int channel=0;channel<nChannels;++channel){
for(int row=0;row<nRows;++row){
for(int col=0;col<nCols;++col){
realType_t val=rCurrentImage_p.Pixel(col,row,channel);
if(val<=0.0) {
rResultImage_p.Pixel(col,row,channel)= -1000; //this is just some value to identify extremes
} else {
val=std::log(val);
rResultImage_p.Pixel(col,row,channel)=val;
}
}
}
}
}
示例7: startHdrCompression
void
GradientsHdrCompression::hdrCompression(realType_t maxGradient_p, realType_t minGradient_p, realType_t expGradient_p,
bool bRescale01_p, imageType_t &rResultImage_p) const
{
TimeMessage startHdrCompression("Gradient Domain HDR Compression");
imageType_t li;
{
TimeMessage startClipValue("Determine clip values for gradients");
imageType_t dx(m_imageDx);
imageType_t dy(m_imageDy);
// now clip values
realType_t minGradientX,maxGradientX;
minMaxValImage(dx,minGradientX,maxGradientX);
realType_t minGradientY,maxGradientY;
minMaxValImage(dy,minGradientY,maxGradientY);
realType_t minValue=Min(minGradientX, minGradientY);
realType_t maxValue=Max(maxGradientX, maxGradientY);
double rangeValue=Max(-minValue, maxValue);
realType_t const clipRange=rangeValue*maxGradient_p;
realType_t const zeroRange=rangeValue*minGradient_p;
startClipValue.Stop();
TimeMessage startClip("Clipping Gradients");
clipImage(dx,-clipRange,clipRange);
zeroRangeImage(dx,-zeroRange,zeroRange);
clipImage(dy,-clipRange,clipRange);
zeroRangeImage(dy,-zeroRange,zeroRange);
startClip.Stop();
if(expGradient_p!=1.0){
TimeMessage start("Pow() transformation of gradients");
absPowImage(dx,expGradient_p);
absPowImage(dy,expGradient_p);
}
TimeMessage startLaplace("Computing 2nd derivative");
createLaplaceVonNeumannImage(dx,dy,li);
}
TimeMessage startSolve("Solving image");
solveImage(li,rResultImage_p);
startSolve.Stop();
TimeMessage startRescale("Rescaling image");
if(bRescale01_p){
rResultImage_p.Rescale(0.0,1.0);
} else {
rResultImage_p.Rescale(m_dMinVal,m_dMaxVal);
}
}
示例8: AssertColImage
//static
void
GradientsBase::createDyImage(imageType_t const &rImage_p, imageType_t &rResultImage_p)
{
AssertColImage(rImage_p);
int const nRows=rImage_p.Height();
int const nCols=rImage_p.Width();
int const nChannels=rImage_p.NumberOfChannels();
imageType_t::color_space colorSpace=rImage_p.ColorSpace();
rResultImage_p.AllocateData(nCols,nRows-1,nChannels,colorSpace);
for(int chan=0;chan<nChannels;++chan){
for (int row=0;row<nRows-1;++row){
for(int col=0;col<nCols;++col){
rResultImage_p.Pixel(col,row,chan)=rImage_p.Pixel(col,row+1,chan)-rImage_p.Pixel(col,row,chan);
}
}
}
}
示例9: expImage
//static
void GradientsHdrComposition::expImage(imageType_t const & rCurrentImage_p,
imageType_t & rResultImage_p)
{
int const nCols=rCurrentImage_p.Width();
int const nRows=rCurrentImage_p.Height();
int const nChannels=rCurrentImage_p.NumberOfChannels();
imageType_t::color_space colorSpace=rCurrentImage_p.ColorSpace();
if (&rCurrentImage_p != &rResultImage_p){
rResultImage_p.AllocateData(nCols,nRows, nChannels, colorSpace);
}
for(int channel=0;channel<nChannels;++channel){
for(int row=0;row<nRows;++row){
for(int col=0;col<nCols;++col){
realType_t val=rCurrentImage_p.Pixel(col,row,channel);
rResultImage_p.Pixel(col,row,channel)=std::exp(val);
}
}
}
}
示例10: Assert
//static
void GradientsHdrComposition::addToImage(imageType_t const & rImage_p,
int imageNum_p,
weightImageType_t const & rMask_p,
imageType_t &rSumImageDx_p,imageType_t &rSumImageDy_p,
numImageType_t &rDxImage_p,
numImageType_t &rDyImage_p)
{
int const nCols=rImage_p.Width();
int const nRows=rImage_p.Height();
int const nChannels=rImage_p.NumberOfChannels();
Assert(nCols==rSumImageDx_p.Width()+1);
Assert(nRows==rSumImageDx_p.Height());
Assert(nChannels==rSumImageDx_p.NumberOfChannels());
Assert(nCols==rSumImageDy_p.Width());
Assert(nRows==rSumImageDy_p.Height()+1);
Assert(nChannels==rSumImageDy_p.NumberOfChannels());
Assert(nCols==rDxImage_p.Width());
Assert(nRows==rDxImage_p.Height());
Assert(nChannels==rDxImage_p.NumberOfChannels());
Assert(nCols==rDyImage_p.Width());
Assert(nRows==rDyImage_p.Height());
Assert(nChannels==rDyImage_p.NumberOfChannels());
imageType_t dxImage, dyImage;
const double zeroLimit=0.0; /// limit for weight that is considered zero
// handle Dx
TimeMessage startDx("Creating Dx");
createDxImage(rImage_p,dxImage);
startDx.Stop();
TimeMessage startAddDx("Adding Dx to gradients");
// transfer useful dx pixels
for(int row=0;row<nRows;++row){
for(int col=0;col<nCols-1;++col){
if(rMask_p.Pixel(col,row)>zeroLimit && rMask_p.Pixel(col+1,row)>zeroLimit) {
// we are inside of image, and have useful gradient there
for(int channel=0;channel<nChannels;++channel){
realType_t currentVal=dxImage.Pixel(col,row,channel);
realType_t sumVal=rSumImageDx_p.Pixel(col,row,channel);
if(std::abs(currentVal)>std::abs(sumVal)){
rSumImageDx_p.Pixel(col,row,channel)=currentVal;
rDxImage_p.Pixel(col,row,channel)=imageNum_p;
} //if abs
} // for chan
// FIXME may need to add border handling
} //if inside
} //for col
} //for row
dxImage.AllocateData(0,0); //save some memory
startAddDx.Stop();
// handle Dy just as dx
TimeMessage startDy("Creating Dy");
createDyImage(rImage_p,dyImage);
startDy.Stop();
TimeMessage startAddDy("Adding Dxy to gradients");
// transfer useful dy pixels
for(int row=0;row<nRows-1;++row){
for(int col=0;col<nCols;++col){
if(rMask_p.Pixel(col,row)>zeroLimit && rMask_p.Pixel(col,row+1)>zeroLimit) {
for(int channel=0;channel<nChannels;++channel){
// we are inside of image, and have useful gradient there
realType_t currentVal=dyImage.Pixel(col,row,channel);
realType_t sumVal=rSumImageDy_p.Pixel(col,row,channel);
if(std::abs(currentVal)>std::abs(sumVal)){
rSumImageDy_p.Pixel(col,row,channel)=currentVal;
rDyImage_p.Pixel(col,row,channel)=imageNum_p;
} //if abs()
} // for chan
// FIXME may need to add border handling
} // if inside
} //for col
} //for row
startAddDy.Stop();
}
示例11: addToImage
//static
void GradientsMergeMosaic::addToImage(imageType_t const & rImage_p,pcl_enum eType_p,
weightImageType_t const & rMask_p,
imageType_t &rSumImageDx_p,imageType_t &rSumImageDy_p,
weightImageType_t &rCountImageDx_p, weightImageType_t &rCountImageDy_p)
{
int const nCols=rImage_p.Width();
int const nRows=rImage_p.Height();
int const nChannels=rImage_p.NumberOfChannels();
imageType_t dxImage, dyImage;
const double zeroLimit=0.0; /// limit for weight that is considered zero
TimeMessage startDx("Creating Dx");
createDxImage(rImage_p,dxImage);
startDx.Stop();
TimeMessage startAddDx("Adding Dx");
// transfer useful dx pixels
// FIXME this is a relatively slow loop. Think about making it faster
for(int row=0;row<nRows;++row){
for(int col=0;col<nCols-1;++col){
if(rMask_p.Pixel(col,row)>zeroLimit && rMask_p.Pixel(col+1,row)>zeroLimit) {
// we are inside of image
realType_t weight=(rMask_p.Pixel(col,row)+rMask_p.Pixel(col+1,row))/2.0;
if(eType_p==GradientsMergeMosaicType::Average){
if(rCountImageDx_p.Pixel(col,row)<=0.0){
// first foreground pixel on this location
for(int channel=0;channel<nChannels;++channel){
rSumImageDx_p.Pixel(col,row,channel)=dxImage.Pixel(col,row,channel)*weight;
}
} else {
// there have been other pixels. Create average
for(int channel=0;channel<nChannels;++channel){
rSumImageDx_p.Pixel(col,row,channel)+=dxImage.Pixel(col,row,channel)*weight;
}
}
rCountImageDx_p.Pixel(col,row)+=weight;
} else {
// type overlay, last gradient wins
if(rCountImageDx_p.Pixel(col,row)<=0.0){
// first foreground pixel on this location
for(int channel=0;channel<nChannels;++channel){
rSumImageDx_p.Pixel(col,row,channel)=dxImage.Pixel(col,row,channel);
}
rCountImageDx_p.Pixel(col,row)=1.0; //mark as used
} else {
// there have been other pixels. Blend
for(int channel=0;channel<nChannels;++channel){
rSumImageDx_p.Pixel(col,row,channel)=dxImage.Pixel(col,row,channel)*weight+rSumImageDx_p.Pixel(col,row,channel)*(1.0-weight);
}
}
} //if type
} else if(rCountImageDx_p.Pixel(col,row)==0.0 &&
(rMask_p.Pixel(col,row)<0.0 || rMask_p.Pixel(col+1,row)<0.0)) {
// we are at border of image and dont have values there. Just copy in gradient so if nothing else comes in, we have at least the border
for(int channel=0;channel<nChannels;++channel){
rSumImageDx_p.Pixel(col,row,channel)=dxImage.Pixel(col,row,channel);
}
// add if first should win. Otherwise last will win
//rCountImageDx_p.Pixel(col,row)=-1.0; // mark as background already occupied
}
} //for col
} //for row
dxImage.AllocateData(0,0); //save some memory
startAddDx.Stop();
TimeMessage startDy("Creating Dy");
// transfer useful dy pixels
createDyImage(rImage_p,dyImage);
startDy.Stop();
TimeMessage startAddDy("Adding Dy");
for(int row=0;row<nRows-1;++row){
for(int col=0;col<nCols;++col){
if(rMask_p.Pixel(col,row)>zeroLimit && rMask_p.Pixel(col,row+1)>zeroLimit) {
realType_t weight=(rMask_p.Pixel(col,row)+rMask_p.Pixel(col,row+1))/2.0;
if(eType_p==GradientsMergeMosaicType::Average){
// type average and inside
if(rCountImageDy_p.Pixel(col,row)<=0.0){
// first foreground pixel on this location
for(int channel=0;channel<nChannels;++channel){
rSumImageDy_p.Pixel(col,row,channel)=dyImage.Pixel(col,row,channel)*weight;
}
} else {
// we already were there. Blend
for(int channel=0;channel<nChannels;++channel){
rSumImageDy_p.Pixel(col,row,channel)+=dyImage.Pixel(col,row,channel)*weight;
}
}
rCountImageDy_p.Pixel(col,row)+=weight;
} else {
// type overlay and inside, last gradient wins
if(rCountImageDy_p.Pixel(col,row)<=0.0){
// first foreground pixel on this location
for(int channel=0;channel<nChannels;++channel){
rSumImageDy_p.Pixel(col,row,channel)=dyImage.Pixel(col,row,channel);
}
rCountImageDy_p.Pixel(col,row)=1.0; //mark as used
} else {
//.........这里部分代码省略.........
示例12: Assert
//static
void GradientsMergeMosaic::mergeMosaic(imageListType_t const & rImageList_p,
realType_t dBlackPoint_p,
pcl_enum eType_p,
int32 shrinkCount_p,
int32 featherRadius_p,
imageType_t &rResultImage_p,
sumMaskImageType_t &rSumMaskImage_p)
{
Assert(rImageList_p.Length()>=1);
bool firstImage=true;
int nCols=0,nRows=0,nChannels=0; /// size and color space of first image
imageType_t::color_space colorSpace;
weightImageType_t countImageDx, countImageDy; /// number of pixels that contributed to sumImageDx,Dy in average mode
imageType_t sumImageDx, sumImageDy; /// combined gradients in x and y direction. Note: these gradients are *between* the pixels
/// of the original image, so size is one less then original image is direction of derivative
int nImages=0; /// number of images read
const int enlargeSize=1; // number of pixels added at the border
TimeMessage startMergeMosaic("Gradient Domain Merge Mosaic");
TimeMessage startLoadImages("Loading images");
for(std::size_t i=0;i<rImageList_p.Length();++i){
imageType_t currentImage;
int imageIndex=0;
// allow for multi-image files
while(loadFile(rImageList_p[i],imageIndex,currentImage)){
++nImages;
++imageIndex;
// expand image dimensions so I have sufficient border for morpological transform and convolution
TimeMessage startEnlarge("creating border");
currentImage.CropBy(enlargeSize,enlargeSize,enlargeSize,enlargeSize);
startEnlarge.Stop();
if(firstImage){
firstImage=false;
// determine those parameters that must be shared by all images
nCols=currentImage.Width();
nRows=currentImage.Height();
nChannels=currentImage.NumberOfChannels();
colorSpace=currentImage.ColorSpace();
//allocate necessary helper images
rSumMaskImage_p.AllocateData(nCols,nRows);
rSumMaskImage_p.ResetSelections();
rSumMaskImage_p.Black();
sumImageDx.AllocateData(nCols-1,nRows,nChannels,colorSpace);
sumImageDx.ResetSelections();
sumImageDx.Black();
sumImageDy.AllocateData(nCols,nRows-1,nChannels,colorSpace);
sumImageDy.ResetSelections();
sumImageDy.Black();
countImageDx.AllocateData(nCols-1,nRows);
countImageDx.Black();
countImageDy.AllocateData(nCols,nRows-1);
countImageDy.Black();
} else {
// FIXME I wonder if I should check color space etc as well...
// check if properties of this image are identical to those of the first image
if(nCols!=currentImage.Width()) {
throw Error("Current image width differs from first image width.");
} else if(nRows!=currentImage.Height()) {
throw Error("Current image height differs from first image height.");
} else if(nChannels!=currentImage.NumberOfChannels()) {
throw Error("Current image number of channels differs from first image number of channels.");
}
}
TimeMessage startProcessImage("Processing Image"+String(nImages));
mergeMosaicProcessImage(currentImage,dBlackPoint_p,eType_p,shrinkCount_p,featherRadius_p,sumImageDx, sumImageDy ,rSumMaskImage_p,countImageDx, countImageDy);
}
}
startLoadImages.Stop();
if (eType_p==GradientsMergeMosaicType::Average) {
TimeMessage startAverage("Averaging images");
averageImage(eType_p,countImageDx,sumImageDx);
averageImage(eType_p,countImageDy,sumImageDy);
// we do not need count images any longer
countImageDx.AllocateData(0,0);
countImageDy.AllocateData(0,0);
}
// at this point:
// sumImageDx: Average or overlay of gradients of images read in x direction
// sumImageDy: Average or overlay of gradients of images read in y direction
// rSumMaskImage_p: mask with different values for the different sources of images. 0 is background.
// We use this later for information of the user, but it is not needed in the following process
TimeMessage startMerge("Merging Images");
imageType_t laplaceImage;
TimeMessage startLaplace("Creating Laplace image");
createLaplaceVonNeumannImage(sumImageDx,sumImageDy,laplaceImage);
startLaplace.Stop();
TimeMessage startSolve("Solving Laplace");
solveImage(laplaceImage,rResultImage_p);
startSolve.Stop();
startMerge.Stop();
rResultImage_p.ResetSelections();
#if 0
// for debugging laplaceImage
// rResultImage_p.Assign(laplaceImage);
rResultImage_p.Assign(sumImageDx);
//.........这里部分代码省略.........
示例13: mergeMosaicProcessImage
//static
void GradientsMergeMosaic::mergeMosaicProcessImage(imageType_t const & rImage_p, realType_t dBlackPoint_p,
pcl_enum eType_p,
int32 shrinkCount_p,
int32 featherRadius_p,
imageType_t &rSumImageDx_p,
imageType_t &rSumImageDy_p,
sumMaskImageType_t &rSumMaskImage_p,
weightImageType_t &rCountImageDx_p,
weightImageType_t &rCountImageDy_p)
{
#ifdef DEBUG
int const nCols=rImage_p.Width();
int const nRows=rImage_p.Height();
int const nChannels=rImage_p.NumberOfChannels();
#endif
Assert(nCols==rSumImageDx_p.Width()+1);
Assert(nRows==rSumImageDx_p.Height());
Assert(nChannels==rSumImageDx_p.NumberOfChannels());
Assert(nCols==rSumImageDy_p.Width());
Assert(nRows==rSumImageDy_p.Height()+1);
Assert(nChannels==rSumImageDy_p.NumberOfChannels());
Assert(nCols==rSumMaskImage_p.Width());
Assert(nRows==rSumMaskImage_p.Height());
Assert(1==rSumMaskImage_p.NumberOfChannels());
Assert(eType_p!=GradientsMergeMosaicType::Average || nCols==rCountImageDx_p.Width()+1);
Assert(eType_p!=GradientsMergeMosaicType::Average || nRows==rCountImageDx_p.Height());
Assert(eType_p!=GradientsMergeMosaicType::Average || 1==rCountImageDx_p.NumberOfChannels());
Assert(eType_p!=GradientsMergeMosaicType::Average || nCols==rCountImageDy_p.Width());
Assert(eType_p!=GradientsMergeMosaicType::Average || nRows==rCountImageDy_p.Height()+1);
Assert(eType_p!=GradientsMergeMosaicType::Average || 1==rCountImageDy_p.NumberOfChannels());
Assert(shrinkCount_p>=0);
Assert(featherRadius_p>=0);
Assert(dBlackPoint_p>=0.0);
weightImageType_t maskImage;
TimeMessage startAddImage("Adding image to data");
TimeMessage startBinarize("Binarize Image");
binarizeImage(rImage_p,dBlackPoint_p,maskImage);
// save this for border computation later
weightImageType_t fullMask(maskImage);
startBinarize.Stop();
// we are doing this because image after StarAlign usually contain aliased pixels.
// These must not to be used during merge.
TimeMessage startShrink("Shrinking mask");
erodeMask(maskImage,shrinkCount_p);
startShrink.Stop();
TimeMessage startFeather("Feathering mask");
featherMask(maskImage,featherRadius_p);
startFeather.Stop();
TimeMessage startBorder("Computing border");
addBorder(fullMask,maskImage);
fullMask.AllocateData(0,0); // save memory
startBorder.Stop();
TimeMessage startSumMask("Creating combined mask");
addToMask(maskImage,eType_p,rSumMaskImage_p);
startSumMask.Stop();
TimeMessage startAddGradients("Adding gradients data");
addToImage(rImage_p,eType_p,maskImage,rSumImageDx_p,rSumImageDy_p,rCountImageDx_p, rCountImageDy_p);
startAddGradients.Stop();
}