本文整理汇总了C++中gyro_t类的典型用法代码示例。如果您正苦于以下问题:C++ gyro_t类的具体用法?C++ gyro_t怎么用?C++ gyro_t使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了gyro_t类的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getMpuDataStatus
bool getMpuDataStatus(gyro_t *gyro)
{
bool mpuDataStatus;
if (!gyro->intStatus)
return false;
gyro->intStatus(&mpuDataStatus);
return mpuDataStatus;
}
示例2: sensorsAutodetect
bool sensorsAutodetect(void)
{
memset(&acc, 0, sizeof(acc));
memset(&gyro, 0, sizeof(gyro));
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) || defined(USE_ACC_MPU6050)
const extiConfig_t *extiConfig = selectMPUIntExtiConfig();
mpuDetectionResult_t *mpuDetectionResult = detectMpu(extiConfig);
UNUSED(mpuDetectionResult);
#endif
if (!detectGyro()) {
return false;
}
detectAcc(sensorSelectionConfig()->acc_hardware);
detectBaro(sensorSelectionConfig()->baro_hardware);
// Now time to init things, acc first
if (sensors(SENSOR_ACC))
acc.init();
// this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
gyro.init(gyroConfig()->gyro_lpf);
#ifdef MAG
detectMag(sensorSelectionConfig()->mag_hardware);
#endif
reconfigureAlignment(sensorAlignmentConfig());
return true;
}
示例3: sensorsInit
void sensorsInit(void)
{
zeroSensorAccumulators();
// TODO allow user to select hardware if there are multiple choices
if(mpu6050Detect(&gyro, &accel, cfg.mpu6050Scale)) {
sensorsSet(SENSOR_ACC);
} else if(!mpu3050Detect(&gyro)) {
failureMode(3);
}
if(adxl345Detect(&accel)) {
sensorsSet(SENSOR_ACC);
}
// At the moment we will do this after mpu6050 and overrride mpu6050 accel if detected
if(mma8452Detect(&accel)) {
sensorsSet(SENSOR_ACC);
}
gyro.init();
if(sensorsGet(SENSOR_ACC))
accel.init();
if(hmc5883Detect(&mag)) {
mag.init();
sensorsSet(SENSOR_MAG);
}
#ifdef SONAR
if(feature(FEATURE_PPM);) {
示例4: gyroSample
void gyroSample(void)
{
uint8_t i;
gyro.read(sensorData.gyro);
for(i = 0; i < 3; ++i)
sensorData.gyroAccum[i] += sensorData.gyro[i] - sensorParams.gyroRTBias[i];
sensorData.gyroSamples++;
}
示例5: sensorsAutodetect
bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint8_t gyroLpf, uint8_t accHardwareToUse, uint8_t magHardwareToUse, uint8_t baroHardwareToUse,
int16_t magDeclinationFromConfig,
uint32_t looptime, uint8_t gyroSync, uint8_t gyroSyncDenominator) {
int16_t deg, min;
#ifndef MAG
UNUSED(magHardwareToUse);
#endif
memset(&acc, 0, sizeof(acc));
memset(&gyro, 0, sizeof(gyro));
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) || defined(USE_ACC_MPU6050)
const extiConfig_t *extiConfig = selectMPUIntExtiConfig();
mpuDetectionResult_t *mpuDetectionResult = detectMpu(extiConfig);
UNUSED(mpuDetectionResult);
#endif
if (!detectGyro()) {
return false;
}
detectAcc(accHardwareToUse);
detectBaro(baroHardwareToUse);
// Now time to init things, acc first
if (sensors(SENSOR_ACC))
acc.init();
// this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
gyroUpdateSampleRate(looptime, gyroLpf, gyroSync, gyroSyncDenominator); // Set gyro sampling rate divider before initialization
gyro.init(gyroLpf);
#ifdef MAG
detectMag(magHardwareToUse);
#endif
reconfigureAlignment(sensorAlignmentConfig);
// FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c
if (sensors(SENSOR_MAG)) {
// calculate magnetic declination
deg = magDeclinationFromConfig / 100;
min = magDeclinationFromConfig % 100;
magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
} else {
magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used.
}
return true;
}
示例6: gyroGetADC
void gyroGetADC(void)
{
// FIXME When gyro.read() fails due to i2c or other error gyroZero is continually re-applied to gyroADC resulting in a old reading that gets worse over time.
// range: +/- 8192; +/- 2000 deg/sec
gyro.read(gyroADC);
alignSensors(gyroADC, gyroADC, gyroAlign);
if (!isGyroCalibrationComplete()) {
performAcclerationCalibration(gyroConfig->gyroMovementCalibrationThreshold);
}
applyGyroZero();
}
示例7: gyroUpdate
void gyroUpdate(void)
{
int16_t gyroADCRaw[XYZ_AXIS_COUNT];
// range: +/- 8192; +/- 2000 deg/sec
if (!gyro.read(gyroADCRaw)) {
return;
}
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroADC[axis] = gyroADCRaw[axis];
}
alignSensors(gyroADC, gyroADC, gyroAlign);
if (!isGyroCalibrationComplete()) {
performGyroCalibration(gyroConfig->gyroMovementCalibrationThreshold);
}
applyGyroZero();
if (gyroSoftLpfHz) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
if (debugMode == DEBUG_GYRO)
debug[axis] = gyroADC[axis];
if (gyroSoftLpfType == FILTER_BIQUAD)
gyroADCf[axis] = biquadFilterApply(&gyroFilterLPF[axis], (float) gyroADC[axis]);
else if (gyroSoftLpfType == FILTER_PT1)
gyroADCf[axis] = pt1FilterApply4(&gyroFilterPt1[axis], (float) gyroADC[axis], gyroSoftLpfHz, gyroDt);
else
gyroADCf[axis] = firFilterDenoiseUpdate(&gyroDenoiseState[axis], (float) gyroADC[axis]);
if (debugMode == DEBUG_NOTCH)
debug[axis] = lrintf(gyroADCf[axis]);
if (gyroSoftNotchHz1)
gyroADCf[axis] = biquadFilterApply(&gyroFilterNotch_1[axis], gyroADCf[axis]);
if (gyroSoftNotchHz2)
gyroADCf[axis] = biquadFilterApply(&gyroFilterNotch_2[axis], gyroADCf[axis]);
gyroADC[axis] = lrintf(gyroADCf[axis]);
}
} else {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++)
gyroADCf[axis] = gyroADC[axis];
}
}
示例8: sensorsAutodetect
bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint8_t gyroLpf, uint8_t accHardwareToUse, uint8_t magHardwareToUse, uint8_t baroHardwareToUse,
int16_t magDeclinationFromConfig) {
int16_t deg, min;
memset(&acc, 0, sizeof(acc));
memset(&gyro, 0, sizeof(gyro));
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) || defined(USE_ACC_MPU6050)
const extiConfig_t *extiConfig = selectMPUIntExtiConfig();
mpuDetectionResult_t *mpuDetectionResult = detectMpu(extiConfig);
UNUSED(mpuDetectionResult);
#endif
if (!detectGyro()) {
return false;
}
detectAcc(accHardwareToUse);
detectBaro(baroHardwareToUse);
// Now time to init things, acc first
if (sensors(SENSOR_ACC))
acc.init(&acc);
gyro.init(gyroLpf);
detectMag(magHardwareToUse);
reconfigureAlignment(sensorAlignmentConfig);
// FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c
if (sensors(SENSOR_MAG)) {
// calculate magnetic declination
deg = magDeclinationFromConfig / 100;
min = magDeclinationFromConfig % 100;
magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
} else {
magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used.
}
return true;
}
示例9: gyroUpdate
void gyroUpdate(void)
{
// range: +/- 8192; +/- 2000 deg/sec
if (!gyro.read(gyroADCRaw)) {
return;
}
gyroADC[X] = gyroADCRaw[X];
gyroADC[Y] = gyroADCRaw[Y];
gyroADC[Z] = gyroADCRaw[Z];
alignSensors(gyroADC, gyroADC, gyroAlign);
if (!isGyroCalibrationComplete()) {
performAcclerationCalibration(gyroConfig()->gyroMovementCalibrationThreshold);
}
gyroADC[X] -= gyroZero[X];
gyroADC[Y] -= gyroZero[Y];
gyroADC[Z] -= gyroZero[Z];
if (gyroConfig()->gyro_soft_lpf_hz) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
if (debugMode == DEBUG_GYRO)
debug[axis] = gyroADC[axis];
if (gyroConfig()->gyro_soft_type == FILTER_BIQUAD)
gyroADCf[axis] = biquadFilterApply(&gyroFilterLPF[axis], (float) gyroADC[axis]);
else
gyroADCf[axis] = pt1FilterApply(&gyroFilterPt1[axis], (float) gyroADC[axis]);
if (debugMode == DEBUG_NOTCH)
debug[axis] = lrintf(gyroADCf[axis]);
if (gyroConfig()->gyro_soft_notch_hz)
gyroADCf[axis] = biquadFilterApply(&gyroFilterNotch[axis], gyroADCf[axis]);
gyroADC[axis] = lrintf(gyroADCf[axis]);
}
} else {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroADCf[axis] = gyroADC[axis];
}
}
}
示例10: sensorsAutodetect
bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint16_t gyroLpf, uint8_t accHardwareToUse, int16_t magDeclinationFromConfig)
{
int16_t deg, min;
memset(&acc, sizeof(acc), 0);
memset(&gyro, sizeof(gyro), 0);
if (!detectGyro(gyroLpf)) {
return false;
}
detectAcc(accHardwareToUse);
detectBaro();
reconfigureAlignment(sensorAlignmentConfig);
// Now time to init things, acc first
if (sensors(SENSOR_ACC))
acc.init();
// this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
gyro.init();
#ifdef MAG
if (hmc5883lDetect()) {
magAlign = CW180_DEG; // default NAZE alignment
} else {
sensorsClear(SENSOR_MAG);
}
#endif
// FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c
if (sensors(SENSOR_MAG)) {
// calculate magnetic declination
deg = magDeclinationFromConfig / 100;
min = magDeclinationFromConfig % 100;
magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
} else {
magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used.
}
return true;
}
示例11: gyroUpdate
void gyroUpdate(void)
{
int8_t axis;
// range: +/- 8192; +/- 2000 deg/sec
if (!gyro.read(gyroADCRaw)) {
return;
}
// Prepare a copy of int32_t gyroADC for mangling to prevent overflow
for (axis = 0; axis < XYZ_AXIS_COUNT; axis++) gyroADC[axis] = gyroADCRaw[axis];
if (gyroLpfCutHz) {
if (!gyroFilterInitialised) {
if (targetLooptime) { /* Initialisation needs to happen once sample rate is known */
for (axis = 0; axis < 3; axis++) {
filterInitBiQuad(gyroLpfCutHz, &gyroFilterState[axis], 0);
}
gyroFilterInitialised = true;
}
}
if (gyroFilterInitialised) {
for (axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroADC[axis] = lrintf(filterApplyBiQuad((float) gyroADC[axis], &gyroFilterState[axis]));
}
}
}
alignSensors(gyroADC, gyroADC, gyroAlign);
if (!isGyroCalibrationComplete()) {
performAcclerationCalibration(gyroConfig->gyroMovementCalibrationThreshold);
}
applyGyroZero();
}
示例12: gyroUpdate
void gyroUpdate(void)
{
// range: +/- 8192; +/- 2000 deg/sec
if (!gyro.read(gyroADC)) {
return;
}
alignSensors(gyroADC, gyroADC, gyroAlign);
if (gyroLpfCutFreq) {
if (!gyroFilterStateIsSet) {
initGyroFilterCoefficients();
} else {
for (axis = 0; axis < XYZ_AXIS_COUNT; axis++) gyroADC[axis] = lrintf(applyBiQuadFilter((float) gyroADC[axis], &gyroBiQuadState[axis]));
}
}
if (!isGyroCalibrationComplete()) {
performAcclerationCalibration(gyroConfig->gyroMovementCalibrationThreshold);
}
applyGyroZero();
}
示例13: detectAcc
static void detectAcc(accelerationSensor_e accHardwareToUse)
{
accelerationSensor_e accHardware;
#ifdef USE_ACC_ADXL345
drv_adxl345_config_t acc_params;
#endif
retry:
accAlign = ALIGN_DEFAULT;
switch (accHardwareToUse) {
case ACC_DEFAULT:
; // fallthrough
case ACC_ADXL345: // ADXL345
#ifdef USE_ACC_ADXL345
acc_params.useFifo = false;
acc_params.dataRate = 800; // unused currently
#ifdef NAZE
if (hardwareRevision < NAZE32_REV5 && adxl345Detect(&acc_params, &acc)) {
#else
if (adxl345Detect(&acc_params, &acc)) {
#endif
#ifdef ACC_ADXL345_ALIGN
accAlign = ACC_ADXL345_ALIGN;
#endif
accHardware = ACC_ADXL345;
break;
}
#endif
; // fallthrough
case ACC_LSM303DLHC:
#ifdef USE_ACC_LSM303DLHC
if (lsm303dlhcAccDetect(&acc)) {
#ifdef ACC_LSM303DLHC_ALIGN
accAlign = ACC_LSM303DLHC_ALIGN;
#endif
accHardware = ACC_LSM303DLHC;
break;
}
#endif
; // fallthrough
case ACC_MPU6050: // MPU6050
#ifdef USE_ACC_MPU6050
if (mpu6050AccDetect(selectMPU6050Config(), &acc)) {
#ifdef ACC_MPU6050_ALIGN
accAlign = ACC_MPU6050_ALIGN;
#endif
accHardware = ACC_MPU6050;
break;
}
#endif
; // fallthrough
case ACC_MMA8452: // MMA8452
#ifdef USE_ACC_MMA8452
#ifdef NAZE
// Not supported with this frequency
if (hardwareRevision < NAZE32_REV5 && mma8452Detect(&acc)) {
#else
if (mma8452Detect(&acc)) {
#endif
#ifdef ACC_MMA8452_ALIGN
accAlign = ACC_MMA8452_ALIGN;
#endif
accHardware = ACC_MMA8452;
break;
}
#endif
; // fallthrough
case ACC_BMA280: // BMA280
#ifdef USE_ACC_BMA280
if (bma280Detect(&acc)) {
#ifdef ACC_BMA280_ALIGN
accAlign = ACC_BMA280_ALIGN;
#endif
accHardware = ACC_BMA280;
break;
}
#endif
; // fallthrough
case ACC_SPI_MPU6000:
#ifdef USE_ACC_SPI_MPU6000
if (mpu6000SpiAccDetect(&acc)) {
#ifdef ACC_SPI_MPU6000_ALIGN
accAlign = ACC_SPI_MPU6000_ALIGN;
#endif
accHardware = ACC_SPI_MPU6000;
break;
}
#endif
; // fallthrough
case ACC_SPI_MPU6500:
#ifdef USE_ACC_SPI_MPU6500
#ifdef NAZE
if (hardwareRevision == NAZE32_SP && mpu6500SpiAccDetect(&acc)) {
#else
if (mpu6500SpiAccDetect(&acc)) {
#endif
#ifdef ACC_SPI_MPU6500_ALIGN
accAlign = ACC_SPI_MPU6500_ALIGN;
//.........这里部分代码省略.........
示例14: gyroSyncCheckUpdate
bool gyroSyncCheckUpdate(void) {
return gyro.isDataReady && gyro.isDataReady();
}