当前位置: 首页>>代码示例>>C++>>正文


C++ fs_builder类代码示例

本文整理汇总了C++中fs_builder的典型用法代码示例。如果您正苦于以下问题:C++ fs_builder类的具体用法?C++ fs_builder怎么用?C++ fs_builder使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了fs_builder类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: assert

/**
 * Alpha test support for when we compile it into the shader instead
 * of using the normal fixed-function alpha test.
 */
void
fs_visitor::emit_alpha_test()
{
   assert(stage == MESA_SHADER_FRAGMENT);
   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
   const fs_builder abld = bld.annotate("Alpha test");

   fs_inst *cmp;
   if (key->alpha_test_func == GL_ALWAYS)
      return;

   if (key->alpha_test_func == GL_NEVER) {
      /* f0.1 = 0 */
      fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
                                      BRW_REGISTER_TYPE_UW));
      cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
                     BRW_CONDITIONAL_NEQ);
   } else {
      /* RT0 alpha */
      fs_reg color = offset(outputs[0], bld, 3);

      /* f0.1 &= func(color, ref) */
      cmp = abld.CMP(bld.null_reg_f(), color, fs_reg(key->alpha_test_ref),
                     cond_for_alpha_func(key->alpha_test_func));
   }
   cmp->predicate = BRW_PREDICATE_NORMAL;
   cmp->flag_subreg = 1;
}
开发者ID:fourks,项目名称:mesa-mesa,代码行数:32,代码来源:brw_fs_visitor.cpp

示例2: assert

void
fs_visitor::emit_barrier()
{
   assert(devinfo->gen >= 7);
   const uint32_t barrier_id_mask =
      devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;

   /* We are getting the barrier ID from the compute shader header */
   assert(stage == MESA_SHADER_COMPUTE);

   fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);

   const fs_builder pbld = bld.exec_all().group(8, 0);

   /* Clear the message payload */
   pbld.MOV(payload, brw_imm_ud(0u));

   /* Copy the barrier id from r0.2 to the message payload reg.2 */
   fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
   pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));

   /* Emit a gateway "barrier" message using the payload we set up, followed
    * by a wait instruction.
    */
   bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
}
开发者ID:ifzz,项目名称:mesa,代码行数:26,代码来源:brw_fs_visitor.cpp

示例3: setup_uniform_clipplane_values

/**
 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
 *
 * This does nothing if the shader uses gl_ClipDistance or user clipping is
 * disabled altogether.
 */
void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
{
   struct brw_vue_prog_data *vue_prog_data =
      (struct brw_vue_prog_data *) prog_data;
   const struct brw_vs_prog_key *key =
      (const struct brw_vs_prog_key *) this->key;

   /* Bail unless some sort of legacy clipping is enabled */
   if (key->nr_userclip_plane_consts == 0)
      return;

   /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
    *
    *     "If a linked set of shaders forming the vertex stage contains no
    *     static write to gl_ClipVertex or gl_ClipDistance, but the
    *     application has requested clipping against user clip planes through
    *     the API, then the coordinate written to gl_Position is used for
    *     comparison against the user clip planes."
    *
    * This function is only called if the shader didn't write to
    * gl_ClipDistance.  Accordingly, we use gl_ClipVertex to perform clipping
    * if the user wrote to it; otherwise we use gl_Position.
    */

   gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
   if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
      clip_vertex = VARYING_SLOT_POS;

   /* If the clip vertex isn't written, skip this.  Typically this means
    * the GS will set up clipping. */
   if (outputs[clip_vertex].file == BAD_FILE)
      return;

   setup_uniform_clipplane_values(clip_planes);

   const fs_builder abld = bld.annotate("user clip distances");

   this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
   this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
   this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
   this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;

   for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
      fs_reg u = userplane[i];
      fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
      output.reg_offset = i & 3;

      abld.MUL(output, outputs[clip_vertex], u);
      for (int j = 1; j < 4; j++) {
         u.nr = userplane[i].nr + j;
         abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
      }
   }
}
开发者ID:fourks,项目名称:mesa-mesa,代码行数:60,代码来源:brw_fs_visitor.cpp

示例4: emit_untyped_atomic

      /**
       * Emit an untyped surface atomic opcode.  \p dims determines the number
       * of components of the address and \p rsize the number of components of
       * the returned value (either zero or one).
       */
      fs_reg
      emit_untyped_atomic(const fs_builder &bld,
                          const fs_reg &surface, const fs_reg &addr,
                          const fs_reg &src0, const fs_reg &src1,
                          unsigned dims, unsigned rsize, unsigned op,
                          brw_predicate pred)
      {
         /* FINISHME: Factor out this frequently recurring pattern into a
          * helper function.
          */
         const unsigned n = (src0.file != BAD_FILE) + (src1.file != BAD_FILE);
         const fs_reg srcs[] = { src0, src1 };
         const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, n);
         bld.LOAD_PAYLOAD(tmp, srcs, n, 0);

         return emit_send(bld, SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
                          addr, tmp, surface, dims, op, rsize, pred);
      }
开发者ID:alesegdia,项目名称:mesa,代码行数:23,代码来源:brw_fs_surface_builder.cpp

示例5: fs_reg


//.........这里部分代码省略.........

         sources[length++] = zero;
         if (vue_map->slots_valid & VARYING_BIT_LAYER)
            sources[length++] = this->outputs[VARYING_SLOT_LAYER];
         else
            sources[length++] = zero;

         if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
            sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
         else
            sources[length++] = zero;

         if (vue_map->slots_valid & VARYING_BIT_PSIZ)
            sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
         else
            sources[length++] = zero;
         break;
      }
      case BRW_VARYING_SLOT_NDC:
      case VARYING_SLOT_EDGE:
         unreachable("unexpected scalar vs output");
         break;

      default:
         /* gl_Position is always in the vue map, but isn't always written by
          * the shader.  Other varyings (clip distances) get added to the vue
          * map but don't always get written.  In those cases, the
          * corresponding this->output[] slot will be invalid we and can skip
          * the urb write for the varying.  If we've already queued up a vue
          * slot for writing we flush a mlen 5 urb write, otherwise we just
          * advance the urb_offset.
          */
         if (varying == BRW_VARYING_SLOT_PAD ||
             this->outputs[varying].file == BAD_FILE) {
            if (length > 0)
               flush = true;
            else
               urb_offset++;
            break;
         }

         if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
             (varying == VARYING_SLOT_COL0 ||
              varying == VARYING_SLOT_COL1 ||
              varying == VARYING_SLOT_BFC0 ||
              varying == VARYING_SLOT_BFC1)) {
            /* We need to clamp these guys, so do a saturating MOV into a
             * temp register and use that for the payload.
             */
            for (int i = 0; i < 4; i++) {
               fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
               fs_reg src = offset(this->outputs[varying], bld, i);
               set_saturate(true, bld.MOV(reg, src));
               sources[length++] = reg;
            }
         } else {
            for (unsigned i = 0; i < output_components[varying]; i++)
               sources[length++] = offset(this->outputs[varying], bld, i);
            for (unsigned i = output_components[varying]; i < 4; i++)
               sources[length++] = fs_reg(0);
         }
         break;
      }

      const fs_builder abld = bld.annotate("URB write");

      /* If we've queued up 8 registers of payload (2 VUE slots), if this is
       * the last slot or if we need to flush (see BAD_FILE varying case
       * above), emit a URB write send now to flush out the data.
       */
      int last = slot == vue_map->num_slots - 1;
      if (length == 8 || last)
         flush = true;
      if (flush) {
         fs_reg *payload_sources =
            ralloc_array(mem_ctx, fs_reg, length + header_size);
         fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
                                 BRW_REGISTER_TYPE_F);
         payload_sources[0] =
            fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));

         if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
            payload_sources[1] = per_slot_offsets;

         memcpy(&payload_sources[header_size], sources,
                length * sizeof sources[0]);

         abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
                           header_size);

         fs_inst *inst = abld.emit(opcode, reg_undef, payload);
         inst->eot = last && stage == MESA_SHADER_VERTEX;
         inst->mlen = length + header_size;
         inst->offset = urb_offset;
         urb_offset = starting_urb_offset + slot + 1;
         length = 0;
         flush = false;
      }
   }
}
开发者ID:fourks,项目名称:mesa-mesa,代码行数:101,代码来源:brw_fs_visitor.cpp

示例6: retype

/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen6()
{
   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);

   fs_builder abld = bld.annotate("compute pixel centers");
   if (devinfo->gen >= 8 || dispatch_width == 8) {
      /* The "Register Region Restrictions" page says for BDW (and newer,
       * presumably):
       *
       *     "When destination spans two registers, the source may be one or
       *      two registers. The destination elements must be evenly split
       *      between the two registers."
       *
       * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
       * compute our pixel centers.
       */
      fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
                          BRW_REGISTER_TYPE_UW);

      const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
      dbld.ADD(int_pixel_xy,
               fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
               fs_reg(brw_imm_v(0x11001010)));

      this->pixel_x = vgrf(glsl_type::float_type);
      this->pixel_y = vgrf(glsl_type::float_type);
      abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
      abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
   } else {
      /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
       *
       *     "When destination spans two registers, the source MUST span two
       *      registers."
       *
       * Since the GRF source of the ADD will only read a single register, we
       * must do two separate ADDs in SIMD16.
       */
      fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
      fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
      int_pixel_x.type = BRW_REGISTER_TYPE_UW;
      int_pixel_y.type = BRW_REGISTER_TYPE_UW;
      abld.ADD(int_pixel_x,
               fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
               fs_reg(brw_imm_v(0x10101010)));
      abld.ADD(int_pixel_y,
               fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
               fs_reg(brw_imm_v(0x11001100)));

      /* As of gen6, we can no longer mix float and int sources.  We have
       * to turn the integer pixel centers into floats for their actual
       * use.
       */
      this->pixel_x = vgrf(glsl_type::float_type);
      this->pixel_y = vgrf(glsl_type::float_type);
      abld.MOV(this->pixel_x, int_pixel_x);
      abld.MOV(this->pixel_y, int_pixel_y);
   }

   abld = bld.annotate("compute pos.w");
   this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
   this->wpos_w = vgrf(glsl_type::float_type);
   abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);

   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
      uint8_t reg = payload.barycentric_coord_reg[i];
      this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
   }
}
开发者ID:fourks,项目名称:mesa-mesa,代码行数:70,代码来源:brw_fs_visitor.cpp

示例7: retype

/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen6()
{
   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);

   fs_builder abld = bld.annotate("compute pixel centers");
   if (devinfo->gen >= 8 || dispatch_width == 8) {
      /* The "Register Region Restrictions" page says for BDW (and newer,
       * presumably):
       *
       *     "When destination spans two registers, the source may be one or
       *      two registers. The destination elements must be evenly split
       *      between the two registers."
       *
       * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
       * compute our pixel centers.
       */
      fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
                          BRW_REGISTER_TYPE_UW);

      const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
      dbld.ADD(int_pixel_xy,
               fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
               fs_reg(brw_imm_v(0x11001010)));

      this->pixel_x = vgrf(glsl_type::float_type);
      this->pixel_y = vgrf(glsl_type::float_type);
      abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
      abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
   } else {
      /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
       *
       *     "When destination spans two registers, the source MUST span two
       *      registers."
       *
       * Since the GRF source of the ADD will only read a single register, we
       * must do two separate ADDs in SIMD16.
       */
      fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
      fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
      int_pixel_x.type = BRW_REGISTER_TYPE_UW;
      int_pixel_y.type = BRW_REGISTER_TYPE_UW;
      abld.ADD(int_pixel_x,
               fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
               fs_reg(brw_imm_v(0x10101010)));
      abld.ADD(int_pixel_y,
               fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
               fs_reg(brw_imm_v(0x11001100)));

      /* As of gen6, we can no longer mix float and int sources.  We have
       * to turn the integer pixel centers into floats for their actual
       * use.
       */
      this->pixel_x = vgrf(glsl_type::float_type);
      this->pixel_y = vgrf(glsl_type::float_type);
      abld.MOV(this->pixel_x, int_pixel_x);
      abld.MOV(this->pixel_y, int_pixel_y);
   }

   abld = bld.annotate("compute pos.w");
   this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
   this->wpos_w = vgrf(glsl_type::float_type);
   abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);

   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
   uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
      (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
       1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);

   for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
      uint8_t reg = payload.barycentric_coord_reg[i];
      this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));

      if (devinfo->needs_unlit_centroid_workaround &&
          (centroid_modes & (1 << i))) {
         /* Get the pixel/sample mask into f0 so that we know which
          * pixels are lit.  Then, for each channel that is unlit,
          * replace the centroid data with non-centroid data.
          */
         bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);

         uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];

         set_predicate_inv(BRW_PREDICATE_NORMAL, true,
                           bld.half(0).MOV(brw_vec8_grf(reg, 0),
                                           brw_vec8_grf(pixel_reg, 0)));
         set_predicate_inv(BRW_PREDICATE_NORMAL, true,
                           bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
                                           brw_vec8_grf(pixel_reg + 1, 0)));
         if (dispatch_width == 16) {
            set_predicate_inv(BRW_PREDICATE_NORMAL, true,
                              bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
                                              brw_vec8_grf(pixel_reg + 2, 0)));
            set_predicate_inv(BRW_PREDICATE_NORMAL, true,
                              bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
                                              brw_vec8_grf(pixel_reg + 3, 0)));
         }
         assert(dispatch_width != 32); /* not implemented yet */
      }
//.........这里部分代码省略.........
开发者ID:Echelon9,项目名称:mesa,代码行数:101,代码来源:brw_fs_visitor.cpp


注:本文中的fs_builder类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。