本文整理汇总了C++中fs_builder类的典型用法代码示例。如果您正苦于以下问题:C++ fs_builder类的具体用法?C++ fs_builder怎么用?C++ fs_builder使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了fs_builder类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: assert
/**
* Alpha test support for when we compile it into the shader instead
* of using the normal fixed-function alpha test.
*/
void
fs_visitor::emit_alpha_test()
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
const fs_builder abld = bld.annotate("Alpha test");
fs_inst *cmp;
if (key->alpha_test_func == GL_ALWAYS)
return;
if (key->alpha_test_func == GL_NEVER) {
/* f0.1 = 0 */
fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
BRW_REGISTER_TYPE_UW));
cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
BRW_CONDITIONAL_NEQ);
} else {
/* RT0 alpha */
fs_reg color = offset(outputs[0], bld, 3);
/* f0.1 &= func(color, ref) */
cmp = abld.CMP(bld.null_reg_f(), color, fs_reg(key->alpha_test_ref),
cond_for_alpha_func(key->alpha_test_func));
}
cmp->predicate = BRW_PREDICATE_NORMAL;
cmp->flag_subreg = 1;
}
示例2: assert
void
fs_visitor::emit_barrier()
{
assert(devinfo->gen >= 7);
const uint32_t barrier_id_mask =
devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
/* We are getting the barrier ID from the compute shader header */
assert(stage == MESA_SHADER_COMPUTE);
fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
const fs_builder pbld = bld.exec_all().group(8, 0);
/* Clear the message payload */
pbld.MOV(payload, brw_imm_ud(0u));
/* Copy the barrier id from r0.2 to the message payload reg.2 */
fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
/* Emit a gateway "barrier" message using the payload we set up, followed
* by a wait instruction.
*/
bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
}
示例3: setup_uniform_clipplane_values
/**
* Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
*
* This does nothing if the shader uses gl_ClipDistance or user clipping is
* disabled altogether.
*/
void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
{
struct brw_vue_prog_data *vue_prog_data =
(struct brw_vue_prog_data *) prog_data;
const struct brw_vs_prog_key *key =
(const struct brw_vs_prog_key *) this->key;
/* Bail unless some sort of legacy clipping is enabled */
if (key->nr_userclip_plane_consts == 0)
return;
/* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
*
* "If a linked set of shaders forming the vertex stage contains no
* static write to gl_ClipVertex or gl_ClipDistance, but the
* application has requested clipping against user clip planes through
* the API, then the coordinate written to gl_Position is used for
* comparison against the user clip planes."
*
* This function is only called if the shader didn't write to
* gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
* if the user wrote to it; otherwise we use gl_Position.
*/
gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
clip_vertex = VARYING_SLOT_POS;
/* If the clip vertex isn't written, skip this. Typically this means
* the GS will set up clipping. */
if (outputs[clip_vertex].file == BAD_FILE)
return;
setup_uniform_clipplane_values(clip_planes);
const fs_builder abld = bld.annotate("user clip distances");
this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
fs_reg u = userplane[i];
fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
output.reg_offset = i & 3;
abld.MUL(output, outputs[clip_vertex], u);
for (int j = 1; j < 4; j++) {
u.nr = userplane[i].nr + j;
abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
}
}
}
示例4: emit_untyped_atomic
/**
* Emit an untyped surface atomic opcode. \p dims determines the number
* of components of the address and \p rsize the number of components of
* the returned value (either zero or one).
*/
fs_reg
emit_untyped_atomic(const fs_builder &bld,
const fs_reg &surface, const fs_reg &addr,
const fs_reg &src0, const fs_reg &src1,
unsigned dims, unsigned rsize, unsigned op,
brw_predicate pred)
{
/* FINISHME: Factor out this frequently recurring pattern into a
* helper function.
*/
const unsigned n = (src0.file != BAD_FILE) + (src1.file != BAD_FILE);
const fs_reg srcs[] = { src0, src1 };
const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, n);
bld.LOAD_PAYLOAD(tmp, srcs, n, 0);
return emit_send(bld, SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
addr, tmp, surface, dims, op, rsize, pred);
}
示例5: fs_reg
//.........这里部分代码省略.........
sources[length++] = zero;
if (vue_map->slots_valid & VARYING_BIT_LAYER)
sources[length++] = this->outputs[VARYING_SLOT_LAYER];
else
sources[length++] = zero;
if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
else
sources[length++] = zero;
if (vue_map->slots_valid & VARYING_BIT_PSIZ)
sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
else
sources[length++] = zero;
break;
}
case BRW_VARYING_SLOT_NDC:
case VARYING_SLOT_EDGE:
unreachable("unexpected scalar vs output");
break;
default:
/* gl_Position is always in the vue map, but isn't always written by
* the shader. Other varyings (clip distances) get added to the vue
* map but don't always get written. In those cases, the
* corresponding this->output[] slot will be invalid we and can skip
* the urb write for the varying. If we've already queued up a vue
* slot for writing we flush a mlen 5 urb write, otherwise we just
* advance the urb_offset.
*/
if (varying == BRW_VARYING_SLOT_PAD ||
this->outputs[varying].file == BAD_FILE) {
if (length > 0)
flush = true;
else
urb_offset++;
break;
}
if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
(varying == VARYING_SLOT_COL0 ||
varying == VARYING_SLOT_COL1 ||
varying == VARYING_SLOT_BFC0 ||
varying == VARYING_SLOT_BFC1)) {
/* We need to clamp these guys, so do a saturating MOV into a
* temp register and use that for the payload.
*/
for (int i = 0; i < 4; i++) {
fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
fs_reg src = offset(this->outputs[varying], bld, i);
set_saturate(true, bld.MOV(reg, src));
sources[length++] = reg;
}
} else {
for (unsigned i = 0; i < output_components[varying]; i++)
sources[length++] = offset(this->outputs[varying], bld, i);
for (unsigned i = output_components[varying]; i < 4; i++)
sources[length++] = fs_reg(0);
}
break;
}
const fs_builder abld = bld.annotate("URB write");
/* If we've queued up 8 registers of payload (2 VUE slots), if this is
* the last slot or if we need to flush (see BAD_FILE varying case
* above), emit a URB write send now to flush out the data.
*/
int last = slot == vue_map->num_slots - 1;
if (length == 8 || last)
flush = true;
if (flush) {
fs_reg *payload_sources =
ralloc_array(mem_ctx, fs_reg, length + header_size);
fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
BRW_REGISTER_TYPE_F);
payload_sources[0] =
fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
payload_sources[1] = per_slot_offsets;
memcpy(&payload_sources[header_size], sources,
length * sizeof sources[0]);
abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
header_size);
fs_inst *inst = abld.emit(opcode, reg_undef, payload);
inst->eot = last && stage == MESA_SHADER_VERTEX;
inst->mlen = length + header_size;
inst->offset = urb_offset;
urb_offset = starting_urb_offset + slot + 1;
length = 0;
flush = false;
}
}
}
示例6: retype
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen6()
{
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
fs_builder abld = bld.annotate("compute pixel centers");
if (devinfo->gen >= 8 || dispatch_width == 8) {
/* The "Register Region Restrictions" page says for BDW (and newer,
* presumably):
*
* "When destination spans two registers, the source may be one or
* two registers. The destination elements must be evenly split
* between the two registers."
*
* Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
* compute our pixel centers.
*/
fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
BRW_REGISTER_TYPE_UW);
const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
dbld.ADD(int_pixel_xy,
fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
fs_reg(brw_imm_v(0x11001010)));
this->pixel_x = vgrf(glsl_type::float_type);
this->pixel_y = vgrf(glsl_type::float_type);
abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
} else {
/* The "Register Region Restrictions" page says for SNB, IVB, HSW:
*
* "When destination spans two registers, the source MUST span two
* registers."
*
* Since the GRF source of the ADD will only read a single register, we
* must do two separate ADDs in SIMD16.
*/
fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
int_pixel_x.type = BRW_REGISTER_TYPE_UW;
int_pixel_y.type = BRW_REGISTER_TYPE_UW;
abld.ADD(int_pixel_x,
fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
fs_reg(brw_imm_v(0x10101010)));
abld.ADD(int_pixel_y,
fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
fs_reg(brw_imm_v(0x11001100)));
/* As of gen6, we can no longer mix float and int sources. We have
* to turn the integer pixel centers into floats for their actual
* use.
*/
this->pixel_x = vgrf(glsl_type::float_type);
this->pixel_y = vgrf(glsl_type::float_type);
abld.MOV(this->pixel_x, int_pixel_x);
abld.MOV(this->pixel_y, int_pixel_y);
}
abld = bld.annotate("compute pos.w");
this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
this->wpos_w = vgrf(glsl_type::float_type);
abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
uint8_t reg = payload.barycentric_coord_reg[i];
this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
}
}
示例7: retype
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen6()
{
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
fs_builder abld = bld.annotate("compute pixel centers");
if (devinfo->gen >= 8 || dispatch_width == 8) {
/* The "Register Region Restrictions" page says for BDW (and newer,
* presumably):
*
* "When destination spans two registers, the source may be one or
* two registers. The destination elements must be evenly split
* between the two registers."
*
* Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
* compute our pixel centers.
*/
fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
BRW_REGISTER_TYPE_UW);
const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
dbld.ADD(int_pixel_xy,
fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
fs_reg(brw_imm_v(0x11001010)));
this->pixel_x = vgrf(glsl_type::float_type);
this->pixel_y = vgrf(glsl_type::float_type);
abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
} else {
/* The "Register Region Restrictions" page says for SNB, IVB, HSW:
*
* "When destination spans two registers, the source MUST span two
* registers."
*
* Since the GRF source of the ADD will only read a single register, we
* must do two separate ADDs in SIMD16.
*/
fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
int_pixel_x.type = BRW_REGISTER_TYPE_UW;
int_pixel_y.type = BRW_REGISTER_TYPE_UW;
abld.ADD(int_pixel_x,
fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
fs_reg(brw_imm_v(0x10101010)));
abld.ADD(int_pixel_y,
fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
fs_reg(brw_imm_v(0x11001100)));
/* As of gen6, we can no longer mix float and int sources. We have
* to turn the integer pixel centers into floats for their actual
* use.
*/
this->pixel_x = vgrf(glsl_type::float_type);
this->pixel_y = vgrf(glsl_type::float_type);
abld.MOV(this->pixel_x, int_pixel_x);
abld.MOV(this->pixel_y, int_pixel_y);
}
abld = bld.annotate("compute pos.w");
this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
this->wpos_w = vgrf(glsl_type::float_type);
abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
(1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
uint8_t reg = payload.barycentric_coord_reg[i];
this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
if (devinfo->needs_unlit_centroid_workaround &&
(centroid_modes & (1 << i))) {
/* Get the pixel/sample mask into f0 so that we know which
* pixels are lit. Then, for each channel that is unlit,
* replace the centroid data with non-centroid data.
*/
bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];
set_predicate_inv(BRW_PREDICATE_NORMAL, true,
bld.half(0).MOV(brw_vec8_grf(reg, 0),
brw_vec8_grf(pixel_reg, 0)));
set_predicate_inv(BRW_PREDICATE_NORMAL, true,
bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
brw_vec8_grf(pixel_reg + 1, 0)));
if (dispatch_width == 16) {
set_predicate_inv(BRW_PREDICATE_NORMAL, true,
bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
brw_vec8_grf(pixel_reg + 2, 0)));
set_predicate_inv(BRW_PREDICATE_NORMAL, true,
bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
brw_vec8_grf(pixel_reg + 3, 0)));
}
assert(dispatch_width != 32); /* not implemented yet */
}
//.........这里部分代码省略.........