本文整理汇总了C++中dvector类的典型用法代码示例。如果您正苦于以下问题:C++ dvector类的具体用法?C++ dvector怎么用?C++ dvector使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了dvector类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: dnbinom_tau
/** negative log likelihood of negative binomial with mean and tau
\brief Negative binomial with mean=mu and variance = mu*tau
\author Mollie Brooks
\param x observed counts
\param mu is the predicted mean
\param tau is the overdispersion parameter like in the quasi-poisson. should be >1
\return negative log likelihood \f$ -( \ln(\Gamma(x+k))-\ln(\Gamma(k))-\ln(x!)+k\ln(k)+x\ln(\mu)-(k+x)\ln(k+\mu) )\f$
where \f$ k=\mu/(10^{-120}+\tau-1.0) \f$
\ingroup STATLIB
**/
dvariable dnbinom_tau(const dvector& x, const dvar_vector& mu, const dvar_vector& tau)
{
//the observed counts are in x
//mu is the predicted mean
//tau is the overdispersion parameter
RETURN_ARRAYS_INCREMENT();
int i,imin,imax;
imin=x.indexmin();
imax=x.indexmax();
dvariable loglike;
loglike=0.;
for(i = imin; i<=imax; i++)
{
if (value(tau(i))<1.0)
{
cerr<<"tau("<<i<<") is <=1.0 in dnbinom_tau()";
return(0.0);
}
loglike += log_negbinomial_density(x(i), mu(i), tau(i));
}
RETURN_ARRAYS_DECREMENT();
return(-loglike);
}
示例2: tmp
/**
* Description not yet available.
* \param
*/
void lvector::fill_multinomial(const int& seed, const dvector& p)
// Fils a dvector with random numbers drawn from a multinomial distribution
{
double sum=mean(p)*p.size();
int pmin=p.indexmin();
int pmax=p.indexmax();
dvector tmp(pmin,pmax);
dvector tmp1(pmin,pmax);
dvector choose(indexmin(),indexmax());
choose.fill_randu(seed);
tmp=p/sum;
tmp1(pmin)=tmp(pmin);
for (int j=pmin+1;j<=pmax-1;j++)
{
tmp1(j)=tmp1(j-1)+tmp(j);
}
tmp1(pmax)=1.0;
for (int i=indexmin();i<=indexmax();i++)
{
int j=pmin;
while (choose(i)>tmp1(j))
{
j++;
}
(*this)(i)=j;
}
}
示例3: solve_trans
/**
* Description not yet available.
* \param
*/
dvector solve_trans(const lower_triangular_dmatrix& M,const dvector& y)
{
int mmin=M.indexmin();
int mmax=M.indexmax();
if (y.indexmin() !=mmin || y.indexmax() !=mmax)
{
cerr << "incompatible size in solve_trans" << endl;
ad_exit(1);
}
dvector x(mmin,mmax);
int i,j;
for (i=mmax;i>=mmin;i--)
{
double sum=0.0;
for (j=i+1;j<=mmax;j++)
{
sum+=M(j,i)*x(j);
}
x(i)=(y(i)-sum)/M(i,i);
}
return x;
}
示例4: shape_check
/**
Determine if the lower and upper bounds of two evctors match in a specified
function.
\param v1 a data vector
\param v2 a data vector
\param function_nam a pointer to the name of the function in question.
*/
void shape_check(const dvector& v1, const dvector& v2,
const char *function_name)
{
if (v1.indexmin() != v2.indexmin() || v1.indexmax() != v2.indexmax())
{
cerr << " Vector sizes do no match in" << function_name << "\n";
ad_exit(1);
}
}
示例5: sum
/**
Return the total sum of the elements in values.
\param values dvector
*/
double sum(const dvector& values)
{
double total = 0.0;
for (int i = values.indexmin(); i <= values.indexmax(); ++i)
{
total += values.elem(i);
}
return total;
}
示例6: square
/**
Return dvector results of squaring elements in a values;
constant vector object.
\ingroup misc
\param values of constant object to be squared.
\return vector of the same length as #values containing \f$values_i^2\f$
*/
dvector square(const dvector& values)
{
dvector results;
results.allocate(values);
for (int i = values.indexmin(); i <= values.indexmax(); ++i)
{
results(i) = square(values(i));
}
return results;
}
示例7: data
matrix::matrix(const dvector &vec, bool isRow)
: data(vector<dvector>(isRow? 1: vec.size())), colNum(isRow? vec.size(): 1) {
if(isRow) {
data.front() = vec;
} else {
for(long i = 0; i < (signed) vec.size(); i++) {
data.at(i).resize(1);
data.at(i).front() = vec.at(i);
}
}
}
示例8: z
dvector cubic_spline_function::operator () (const dvector& u)
{
int mmin=u.indexmin();
int mmax=u.indexmax();
dvector z(mmin,mmax);
for (int i=mmin;i<=mmax;i++)
{
z(i)=splint(x,y,y2,u(i));
}
return z;
}
示例9: sgn
/**
Return ivector filled with flags for 1 positive and -1 negative
for values in dvector v.
*/
ivector sgn(const dvector& v)
{
int mmin = v.indexmin();
int mmax = v.indexmax();
ivector ret(mmin, mmax);
for (int i = mmin; i <= mmax; ++i)
{
ret(i)= v(i) > 0 ? 1 : -1;
}
return ret;
}
示例10: robust_regression
dvariable robust_regression(dvector& obs, dvar_vector& pred,
const double& cutoff)
{
if (obs.indexmin() != pred.indexmin() || obs.indexmax() != pred.indexmax() )
{
cerr << "Index limits on observed vector are not equal to the Index\n\
limits on the predicted vector in robust_reg_likelihood function\n";
}
RETURN_ARRAYS_INCREMENT(); //Need this statement because the function
//returns a variable type
int min=obs.indexmin();
int max=obs.indexmax();
dvariable sigma_hat;
dvariable sigma_tilde;
int nobs = max-min+1;
double width=3.0;
double pcon=0.05;
double width2=width*width;
dvariable zpen;
zpen=0.0;
double a,a2;
a=cutoff;
// This bounds a between 0.05 and 1.75
a2=a*a;
dvariable tmp,tmp2,tmp4,sum_square,v_hat;
dvar_vector diff_vec = obs-pred;
tmp = norm(diff_vec);
sum_square = tmp * tmp;
v_hat = 1.e-80 + sum_square/nobs;
sigma_hat=pow(v_hat,.5);
sigma_tilde=a*sigma_hat;
double b=2.*pcon/(width*sqrt(PI));
dvariable log_likelihood;
dvariable div1;
dvariable div2,div4;
div1 = 2*(a2*v_hat);
div2 = width2*(a2*v_hat);
div4 = div2*div2;
log_likelihood = 0;
for (int i=min; i<=max; i++)
{
tmp=diff_vec[i];
tmp2=tmp*tmp;
tmp4=tmp2*tmp2;
log_likelihood -= log((1-pcon)*exp(-tmp2/div1)+b/(1.+tmp4/div4) );
}
log_likelihood += nobs*log(a2*v_hat)/2.;
log_likelihood += zpen;
RETURN_ARRAYS_DECREMENT(); // Need this to decrement the stack increment
// caused by RETURN_ARRAYS_INCREMENT();
return(log_likelihood);
}
示例11: outer_prod
/**
* Description not yet available.
* \param
*/
dmatrix outer_prod(const dvector& v1, const dvector& v2)
{
dmatrix tmp(v1.indexmin(),v1.indexmax(), v2.indexmin(), v2.indexmax() );
for (int i=v1.indexmin(); i<=v1.indexmax(); i++)
{
for (int j=v2.indexmin(); j<=v2.indexmax(); j++)
{
tmp.elem(i,j)=v1.elem(i)*v2.elem(j);
}
}
return(tmp);
}
示例12: allocate
/**
Construct ivector with same dimensions as u.
*/
ivector::ivector(const dvector& u)
{
allocate(u);
for (int i=indexmin();i<=indexmax();i++)
{
#ifdef OPT_LIB
elem(i) = static_cast<int>(u.elem(i));
#else
double ui = u.elem(i);
assert(ui <= INT_MAX);
elem(i) = static_cast<int>(ui);
#endif
}
}
示例13: getMax
bool brightRGB::getMax(const image& img,dvector& dest) const{
// image empty?
if (img.empty()) {
setStatusString("image empty");
dest.resize(0);
return false;
}
const rgbPixel transColor = getParameters().transColor;
ivector maxV(3,-1);
image::const_iterator it = img.begin();
if(getParameters().transparent) {
while(it != img.end()) {
if(*it != transColor) {
if((*it).getRed() > maxV.at(0))
maxV.at(0) = (*it).getRed();
if((*it).getGreen() > maxV.at(1))
maxV.at(1) = (*it).getGreen();
if((*it).getBlue() > maxV.at(2))
maxV.at(2) = (*it).getBlue();
}
it++;
}
// only transparent pixels?
if (maxV.at(0)==-1) {
setStatusString("only transparent pixels");
dest.resize(0);
return false;
}
} else { // no transparent color
while(it != img.end()) {
if((*it).getRed() > maxV.at(0))
maxV.at(0) = (*it).getRed();
if((*it).getGreen() > maxV.at(1))
maxV.at(1) = (*it).getGreen();
if((*it).getBlue() > maxV.at(2))
maxV.at(2) = (*it).getBlue();
it++;
}
}
if(maxV.at(0) == -1)
return false;
dest.castFrom(maxV);
// normalize to 0..1
dest.divide(255);
return true;
};
示例14: ghk
/**
* Description not yet available.
* \param
*/
double ghk(const dvector& lower,const dvector& upper,const dmatrix& Sigma,
const dmatrix& eps,int _i)
{
int n=lower.indexmax();
dmatrix ch=choleski_decomp(Sigma);
dvector l(1,n);
dvector u(1,n);
ghk_test(eps,_i); // test for valid i range
double weight=1.0;
int k=_i;
{
l=lower;
u=upper;
for (int j=1;j<=n;j++)
{
l(j)/=ch(j,j);
u(j)/=ch(j,j);
double Phiu=cumd_norm(u(j));
double Phil=cumd_norm(l(j));
weight*=Phiu-Phil;
double eta=inv_cumd_norm((Phiu-Phil)*eps(k,j)+Phil);
for (int i=j+1;i<=n;i++)
{
double tmp=ch(i,j)*eta;
l(i)-=tmp;
u(i)-=tmp;
}
}
}
return weight;
}
示例15: setStatusString
bool MLP::calcGradient(const dmatrix& inputs,
const ivector& ids,
dvector& grad) {
if (inputs.rows() != ids.size()) {
setStatusString("Number of vectors not consistent with number of ids");
return false;
}
dvector tmp;
int i;
double tmpError;
totalError = 0;
calcGradient(inputs.getRow(0),ids.at(0),grad);
computeActualError(ids.at(0),totalError);
for (i=1;i<inputs.rows();++i) {
calcGradient(inputs.getRow(i),ids.at(i),tmp);
computeActualError(ids.at(i),tmpError);
grad.add(tmp);
totalError+=tmpError;
}
return true;
}