本文整理汇总了C++中dvec类的典型用法代码示例。如果您正苦于以下问题:C++ dvec类的具体用法?C++ dvec怎么用?C++ dvec使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了dvec类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: backPropSet
void DNN::backPropSet(const dvec& input,const dvec& output)
{
unsigned int i;
feedForward(input);
unsigned int L = activations.size() - 1;
/*
* Start with the final layer
*/
std::vector<Matrix> d(L+1);
/*
* Copy contents
*/
Matrix out(output.size(),1);
for(i=0;i<output.size();++i) out(i,0) = output.at(i);
/*
* Final layer error
*/
Matrix DC = Matrix::apply(quad_dC_dA,activations.at(L),out);
d.at(L) = Matrix::had(DC,activations.at(L));
/*
* Backpropagate
*/
for(i=L;i>0;--i)
{
Matrix wd = weights.at(i-1).T() * d.at(i);
d.at(i-1) = Matrix::had( wd, activations.at(i-1) );
}
/*
* Calculate the gradient cost for this set
*/
for(i=L;i>0;--i)
{
bGradient.at(i-1) = bGradient.at(i-1) + d.at(i);
Matrix wg = d.at(i) * activations.at(i-1).T();
wGradient.at(i-1) = wGradient.at(i-1) + wg;
}
}
示例2: gauss
int gauss(dvec& x, dvec& w) {
int n = x.size();
double dist = 1;
double tol = 1e-15;
int iter = 0;
// Use Chebyshev-Gauss nodes and initial guess
initguess(x);
// chebnodes(x);
dvec x0(x);
dvec L(n,0.0);
dvec Lp(n,0.0);
dvec a(n,0.0);
dvec b(n,0.0);
rec_legendre(a,b);
// Iteratively correct nodes with Newton's method
while(dist>tol) {
newton_step(a,b,x,L,Lp);
dist = dist_max(x,x0);
++iter;
x0 = x;
}
// Compute Weights
for(int i=0;i<n;++i){
w[i] = 2.0/((1-x[i]*x[i])*(Lp[i]*Lp[i]));
}
return iter;
}
示例3: newton_step
// Update grid points as well as the nth Legendre polynomial and its derivative
void newton_step(const dvec& a, const dvec& b, dvec& x, dvec& L, dvec& Lp) {
int n = x.size();
legendre(a,b,x,L,Lp);
for(int i=0;i<n;++i) {
x[i] -= L[i]/Lp[i];
}
}
示例4: rec_legendre
// Compute Legendre polynomial recursion coefficients
void rec_legendre(dvec& a, dvec& b){
int n = a.size();
for(int i=0;i<n;++i) {
a[i] = (2.0*i+1.0)/(i+1.0);
b[i] = double(i)/(i+1.0);
}
}
示例5: chebnodes
// Compute Chebyshev Gauss Nodes
double chebnodes(dvec& x) {
int n = x.size();
for(int i=0;i<n;++i) {
x[i] = cos(pi*double(2*i+1)/double(2*n));
}
}
示例6: backProp
void backProp(int target, Delta & d) {
dvec<OUTPUT_SIZE> dErr;
//derive loss function at softmax
int ans = 0;
for (int i = 0; i < OUTPUT_SIZE; ++i) {
dErr.d[i] = output.d[i];
if (output.d[i] > output.d[ans]) {
ans = i;
}
if (target == i) dErr.d[i] -= 1;
}
//derive at hidden
dvec<HIDDEN_SIZE> dHidden;
MVLeftMultiply(model->Wfc, dErr, dHidden);
//derive at output gate
dvec<HIDDEN_SIZE> dGo(dHidden);
dGo *= cellTanh; dGo *= Go.getDerivSigmoid();
//derive at cell
dvec<HIDDEN_SIZE> dCell(dHidden);
dCell *= Go; dCell *= cellTanh.getDerivTanh();
//derive at input/forget/hidden gate
dvec<HIDDEN_SIZE> dGi(dCell); dGi *= Gu; dGi *= Gi.getDerivSigmoid();
dvec<HIDDEN_SIZE> dGu(dCell); dGu *= Gi; dGu *= Gu.getDerivTanh();
dvec<HIDDEN_SIZE> dGf(dCell); dGf *= lastState->cell; dGf *= Gf.getDerivSigmoid();
//derive at input embedding
d.input.initToZero();
dvec<EMBEDDING_SIZE> tmp;
MVLeftMultiply(model->Wi, dGi, tmp); d.input += tmp;
MVLeftMultiply(model->Wf, dGf, tmp); d.input += tmp;
MVLeftMultiply(model->Wo, dGo, tmp); d.input += tmp;
MVLeftMultiply(model->Wu, dGu, tmp); d.input += tmp;
//derive for bias
d.Bf = dGf; d.Bi = dGi;
d.Bo = dGo; d.Bu = dGu;
//derive for weights
VVOuterProduct(dGo, *input, d.Wo);
VVOuterProduct(dGi, *input, d.Wi);
VVOuterProduct(dGf, *input, d.Wf);
VVOuterProduct(dGu, *input, d.Wu);
VVOuterProduct(dGo, lastState->hidden, d.Uo);
VVOuterProduct(dGi, lastState->hidden, d.Ui);
VVOuterProduct(dGf, lastState->hidden, d.Uf);
VVOuterProduct(dGu, lastState->hidden, d.Uu);
}
示例7: feedForward
void DNN::feedForward(const dvec & inputs)
{
unsigned int layers = activations.size();
unsigned int i;
for(i=0;i<inputs.size();++i)
{
activations.at(0)(i,0) = sigmoid(inputs.at(i));
}
for(i=1;i<layers;++i)
{
activations.at(i) = (weights.at(i-1)*activations.at(i-1) + bias.at(i-1)).apply(sigmoid);
}
}
示例8: initguess
double initguess(dvec& x) {
int n = x.size();
for(int i=0;i<n;++i) {
x[i] = -cos(pi*double(i+.75)/double(n+0.5));
}
}
示例9: simple_energy
double simple_energy( const dvec &q , const dvec &p )
{
using boost::math::pow;
const size_t N=q.size();
double e(0.0);
for( size_t n=0 ; n<N ; ++n )
{
e += 0.5*pow<2>( p[0] )
+ pow<4>( q[0] )/4.0;
}
return e;
}
示例10: feedForward
void feedForward(LSTMState *lastState, const string& inputStr) {
this->lastState = lastState;
//get input char embedding
input = &model->lookupTable[inputStr];
//lstm
dvec<HIDDEN_SIZE> tmp;
MVRightMultiply(model->Wi, *input, tmp);
MVRightMultiply(model->Ui, lastState->hidden, Gi);
Gi += tmp; Gi += model->Bi; Gi.performSigmoid();
MVRightMultiply(model->Wf, *input, tmp);
MVRightMultiply(model->Uf, lastState->hidden, Gf);
Gf += tmp; Gf += model->Bf; Gf.performSigmoid();
MVRightMultiply(model->Wo, *input, tmp);
MVRightMultiply(model->Uo, lastState->hidden, Go);
Go += tmp; Go += model->Bo; Go.performSigmoid();
MVRightMultiply(model->Wu, *input, tmp);
MVRightMultiply(model->Uu, lastState->hidden, Gu);
Gu += tmp; Gu += model->Bu; Gu.performTanh();
cell = lastState->cell; cell *= Gf;
tmp = Gi; tmp *= Gu;
cell += tmp;
cellTanh = cell; cellTanh.performTanh();
hidden = cellTanh; hidden *= Go;
//output to fc layer
MVRightMultiply(model->Wfc, hidden, output);
output.performSoftmax();
}
示例11: dist_max
// Compute maximum pointwise difference
double dist_max(const dvec& a, const dvec& b){
int n = a.size();
double dist;
double max_dist;
for(int i=0; i<n; ++i) {
dist = std::abs(a[i]-b[i]);
if(dist>max_dist) {
max_dist = dist;
}
}
return max_dist;
}
示例12: operator
dvec operator()( const dvec &x , dvec dxdt )
{
const size_t N = x.size();
//hpx::cout << boost::format("rhs start %d , %d \n") % x.size() % dxdt.size() << hpx::flush;
dxdt[0] = coupling( x[1]-x[0] );
for( size_t i=1 ; i<N-1 ; ++i )
{
dxdt[i] = coupling( x[i+1]-x[i] ) + coupling( x[i-1]-x[i] );
}
dxdt[N-1] = coupling( x[N-2] - x[N-1] );
//hpx::cout << "rhs end\n" << hpx::flush;
return dxdt;
}
示例13: predict
dvec DNN::predict(const dvec & inputs)
{
if(inputs.size() != activations.at(0).rows())
throw std::runtime_error("Input size must equal the number of input neurons");
feedForward(inputs);
unsigned int layers = activations.size();
return activations[layers-1].col_slice(0,0,activations[layers-1].rows()-1);
}
示例14: result
void ConvNet::learn(dmatrix3 &stimulus, dvec &target)
{
dvec result(target.size());
result = feedforward(stimulus);
real er = 0;
for(int x=0;x<target.size();x++) {
L4.Errors[x] = sigmoid_p(target[x]) * (target[x] - result[x]);
er += L4.Errors[x];
}
std::cout << "Output error: " << er << std::endl;
L3.Errors = L4.backpropagation();
dvec l2er = L3.backpropagation();
L2.Errors = fold3(l2er, L2.OutShape);
L1.Errors = L2.backpropagation();
L4.weight_update(L3.Activations);
L3.weight_update(flatten(L2.Activations));
//L2 is a PoolLayer, those doesn't have any weights.
L1.weight_update(Inputs); // Warning: Input is a pointer!!!
}
示例15: legendre
// Evaluate the nth order Legendre polynomial and its derivative
void legendre(const dvec& a, const dvec& b, const dvec& x, dvec& L, dvec& Lp) {
int n = x.size();
dvec L0(n,1.0);
dvec L1(n,0.0);
// Iterate over grid points
for(int j=0;j<n;++j) {
L1[j] = x[j];
// Iterate over polynomials
for(int k=1;k<n;++k) {
L[j] = a[k]*x[j]*L1[j]-b[k]*L0[j];
L0[j] = L1[j];
L1[j] = L[j];
}
Lp[j] = n*(L0[j]-x[j]*L[j])/(1.0-x[j]*x[j]);
}
}