本文整理汇总了C++中dvar_vector类的典型用法代码示例。如果您正苦于以下问题:C++ dvar_vector类的具体用法?C++ dvar_vector怎么用?C++ dvar_vector使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了dvar_vector类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: inv_cumd_norm
/**
* Description not yet available.
* \param
*/
dvar_vector inv_cumd_norm(const dvar_vector& x)
{
int mmin=x.indexmin();
int mmax=x.indexmax();
dvar_vector tmp(mmin,mmax);
for (int i=mmin;i<=mmax;i++)
{
tmp(i)=inv_cumd_norm(x(i));
}
return tmp;
}
示例2: posfun
/**
* Description not yet available.
* \param
*/
dvar_vector posfun(const dvar_vector&x,double eps,const prevariable& _pen)
{
int mmin=x.indexmin();
int mmax=x.indexmax();
dvar_vector tmp(mmin,mmax);
for (int i=mmin;i<=mmax;i++)
{
tmp(i)=posfun(x(i),eps,_pen);
}
return tmp;
}
示例3: set_value_inv_mc
void set_value_inv_mc(const dvar_vector& x, const dvector& _v, const int& _ii,
const double fmin, const double fmax)
{
dvector& v=(dvector&) _v;
int& ii=(int&) _ii;
int min=x.indexmin();
int max=x.indexmax();
for (int i=min;i<=max;i++)
{
v(ii++)=set_value_inv_mc(x(i),fmin,fmax);
}
}
示例4: robust_regression
dvariable robust_regression(dvector& obs, dvar_vector& pred,
const double& cutoff)
{
if (obs.indexmin() != pred.indexmin() || obs.indexmax() != pred.indexmax() )
{
cerr << "Index limits on observed vector are not equal to the Index\n\
limits on the predicted vector in robust_reg_likelihood function\n";
}
RETURN_ARRAYS_INCREMENT(); //Need this statement because the function
//returns a variable type
int min=obs.indexmin();
int max=obs.indexmax();
dvariable sigma_hat;
dvariable sigma_tilde;
int nobs = max-min+1;
double width=3.0;
double pcon=0.05;
double width2=width*width;
dvariable zpen;
zpen=0.0;
double a,a2;
a=cutoff;
// This bounds a between 0.05 and 1.75
a2=a*a;
dvariable tmp,tmp2,tmp4,sum_square,v_hat;
dvar_vector diff_vec = obs-pred;
tmp = norm(diff_vec);
sum_square = tmp * tmp;
v_hat = 1.e-80 + sum_square/nobs;
sigma_hat=pow(v_hat,.5);
sigma_tilde=a*sigma_hat;
double b=2.*pcon/(width*sqrt(PI));
dvariable log_likelihood;
dvariable div1;
dvariable div2,div4;
div1 = 2*(a2*v_hat);
div2 = width2*(a2*v_hat);
div4 = div2*div2;
log_likelihood = 0;
for (int i=min; i<=max; i++)
{
tmp=diff_vec[i];
tmp2=tmp*tmp;
tmp4=tmp2*tmp2;
log_likelihood -= log((1-pcon)*exp(-tmp2/div1)+b/(1.+tmp4/div4) );
}
log_likelihood += nobs*log(a2*v_hat)/2.;
log_likelihood += zpen;
RETURN_ARRAYS_DECREMENT(); // Need this to decrement the stack increment
// caused by RETURN_ARRAYS_INCREMENT();
return(log_likelihood);
}
示例5: sfabs
/**
* Description not yet available.
* \param
*/
dvar_vector sfabs(const dvar_vector& t1)
{
RETURN_ARRAYS_INCREMENT();
dvar_vector tmp(t1.indexmin(),t1.indexmax());
for (int i=t1.indexmin(); i<=t1.indexmax(); i++)
{
tmp.elem(i)=sfabs(t1.elem(i));
}
RETURN_ARRAYS_DECREMENT();
return(tmp);
}
示例6: sum
/** Compute the sum of a variable type vector.
\ingroup matop
\param v1 A dvar_vector, \f$a\f$.
\return A dvariable, \f$s = \sum a \f$ containing the sum of the vector.
*/
dvariable sum(const dvar_vector& v1)
{
if (allocated(v1))
{
dvector cv1=value(v1);
double tmp=0;
for (int i=cv1.indexmin(); i<=cv1.indexmax(); i++)
{
tmp+=cv1.elem(i);
}
dvariable vtmp=nograd_assign(tmp);
// The derivative list considerations
save_identifier_string("bbbb");
v1.save_dvar_vector_position();
vtmp.save_prevariable_position();
save_identifier_string("aaaa");
gradient_structure::GRAD_STACK1->
set_gradient_stack(X_dv_sum);
return vtmp;
}
else
{
dvariable vtmp=0.0;
return vtmp;
}
}
示例7: ghk_choleski
/**
* Description not yet available.
* \param
*/
dvariable ghk_choleski(const dvar_vector& lower,const dvar_vector& upper,
const dvar_matrix& ch, const dmatrix& eps)
{
RETURN_ARRAYS_INCREMENT();
int n=lower.indexmax();
int m=eps.indexmax();
dvariable ssum=0.0;
dvar_vector l(1,n);
dvar_vector u(1,n);
for (int k=1;k<=m;k++)
{
dvariable weight=1.0;
l=lower;
u=upper;
for (int j=1;j<=n;j++)
{
l(j)/=ch(j,j);
u(j)/=ch(j,j);
dvariable Phiu=cumd_norm(u(j));
dvariable Phil=cumd_norm(l(j));
weight*=Phiu-Phil;
dvariable eta=inv_cumd_norm((Phiu-Phil)*eps(k,j)+Phil);
for (int i=j+1;i<=n;i++)
{
dvariable tmp=ch(i,j)*eta;
l(i)-=tmp;
u(i)-=tmp;
}
}
ssum+=weight;
}
RETURN_ARRAYS_DECREMENT();
return ssum/m;
}
示例8: ghk_m
/**
* Description not yet available.
* \param
*/
dvariable ghk_m(const dvar_vector& upper,const dvar_matrix& Sigma,
const dmatrix& eps)
{
RETURN_ARRAYS_INCREMENT();
int n=upper.indexmax();
int m=eps.indexmax();
dvariable ssum=0.0;
dvar_vector u(1,n);
dvar_matrix ch=choleski_decomp(Sigma);
for (int k=1;k<=m;k++)
{
dvariable weight=1.0;
u=upper;
for (int j=1;j<=n;j++)
{
u(j)/=ch(j,j);
dvariable Phiu=cumd_norm(u(j));
weight*=Phiu;
dvariable eta=inv_cumd_norm(1.e-30+Phiu*eps(k,j));
for (int i=j+1;i<=n;i++)
{
dvariable tmp=ch(i,j)*eta;
u(i)-=tmp;
}
}
ssum+=weight;
}
RETURN_ARRAYS_DECREMENT();
return ssum/m;
}
示例9: ghk
/**
* Description not yet available.
* \param
*/
dvariable ghk(const dvar_vector& lower,const dvar_vector& upper,
const dvar_matrix& Sigma, const dmatrix& eps,int _i)
{
RETURN_ARRAYS_INCREMENT();
int n=lower.indexmax();
dvar_matrix ch=choleski_decomp(Sigma);
dvar_vector l(1,n);
dvar_vector u(1,n);
ghk_test(eps,_i);
dvariable weight=1.0;
int k=_i;
{
l=lower;
u=upper;
for (int j=1;j<=n;j++)
{
l(j)/=ch(j,j);
u(j)/=ch(j,j);
dvariable Phiu=cumd_norm(u(j));
dvariable Phil=cumd_norm(l(j));
weight*=Phiu-Phil;
dvariable eta=inv_cumd_norm((Phiu-Phil)*eps(k,j)+Phil+1.e-30);
for (int i=j+1;i<=n;i++)
{
dvariable tmp=ch(i,j)*eta;
l(i)-=tmp;
u(i)-=tmp;
}
}
}
RETURN_ARRAYS_DECREMENT();
return weight;
}
示例10: calc_equilibrium
/**
* @brief Get initial vector of new shell and oldshell crabs at equilibrium
* @ingroup GMACS
* @authors Steve Martell and John Levitt
* @date Jan 3, 2015.
*
* @param[out] n vector of numbers at length in new shell condition
* @param[out] o vector of numbers of old shell crabs at length
* @param[in] A size transition matrix
* @param[in] S diagonal matrix of length specific survival rates
* @param[in] P diagonal matrix of length specific molting probabilities
* @param[in] r vector of new recruits at length.
*
* @details
* Jan 3, 2015. Working with John Levitt on analytical solution instead of the
* numerical approach. Think we have a soln.
*
* Notation: \n
* \f$n\f$ = vector of newshell crabs \n
* \f$o\f$ = vector of oldshell crabs \n
* \f$P\f$ = diagonal matrix of molting probabilities by size \n
* \f$S\f$ = diagonal matrix of survival rates by size \n
* \f$A\f$ = Size transition matrix \n
* \f$r\f$ = vector of new recruits (newshell) \n
* \f$I\f$ = identity matrix. \n
*
*
* The following equations represent the dynamics of newshell \a n and oldshell crabs.
* \f{align*}{
* n &= nSPA + oSPA + r \\
* o &= oS(I-P) + nS(I-P)
* \f}
* Objective is to solve the above equations for \f$n\f$ and \f$o\f$ repsectively.
* First, lets solve the second equation for \f$o\f$:
* \f{align*}{
* o &= n(I-P)S[I-(I-P)S]^{-1}
* \f}
* next substitute the above expression into first equation above and solve for \f$n\f$
* \f{align*}{
* n &= nPSA + n(I-P)S[I-(I-P)S]^{-1}PSA + r \\
* \mbox{let} \quad \beta& = [I-(I-P)S]^{-1}, \\
* r &= n - nPSA - n(I-P)S \beta PSA \\
* r &= n(I - PSA - (I-P)S \beta PSA) \\
* \mbox{let} \quad C& = (I - PSA - (I-P)S \beta PSA), \\
* n &= (C)^{-1} (r)
* \f}
* Note that \f$C\f$ must be invertable to solve for the equilibrium solution for \f$n\f$.
* So the diagonal elements of \f$P\f$ and \f$S\f$ must be positive non-zero numbers.
*
*
*/
void calc_equilibrium(dvar_vector& n,
dvar_vector& o,
const dvar_matrix& A,
const dvar_matrix& S,
const dvar_matrix& P,
const dvar_vector& r)
{
int nclass = n.indexmax();
dmatrix Id = identity_matrix(1,nclass);
dvar_matrix B(1,nclass,1,nclass);
dvar_matrix C(1,nclass,1,nclass);
dvar_matrix D(1,nclass,1,nclass);
B = inv(Id - (Id-P)*S);
C = P * S * A;
D = trans(Id - C - (Id-P)*S*B*C);
// COUT(A);
// COUT(inv(D)*r);
n = solve(D,r); // newshell
o = n*((Id-P)*S*B); // oldshell
}
示例11: mean
/**
* Description not yet available.
* \param
*/
dvariable mean(const dvar_vector& v)
{
dvariable tmp;
RETURN_ARRAYS_INCREMENT();
tmp=sum(v)/double(v.size());
RETURN_ARRAYS_DECREMENT();
return(tmp);
}
示例12: posfun
dvar_vector posfun(const dvar_vector& x, const double& eps, dvariable& pen)
{
int i;
dvar_vector xp(x.indexmin(),x.indexmax());
for(i=x.indexmin();i<=x.indexmax();i++)
{
if(x(i)>=eps)
{
xp(i) = x(i);
}
else
{
pen += 0.01*square(x(i)-eps);
xp(i) = eps/(2.-x(i)/eps);
}
}
return(xp);
}
示例13: std_dev
/**
* Description not yet available.
* \param
*/
dvariable std_dev(const dvar_vector& v)
{
dvariable tmp;
RETURN_ARRAYS_INCREMENT();
tmp=norm(v)/sqrt(double(v.size()));
dvariable tmp1;
tmp1=mean(v);
RETURN_ARRAYS_DECREMENT();
return(sqrt(tmp*tmp-tmp1*tmp1));
}
示例14: lubksb
/** LU decomposition back susbstitution alogrithm for variable object.
\param a A dmatrix containing LU decomposition of input matrix. \f$a\f$.
\param indx Permutation vector from ludcmp.
\param b A dvector containing the RHS, \f$b\f$ of the linear equation
\f$A\cdot X = B\f$, to be solved, and containing on return the solution vector \f$X\f$.
\n\n The implementation of this algorithm was inspired by
"Numerical Recipes in C", 2nd edition,
Press, Teukolsky, Vetterling, Flannery, chapter 2
*/
void lubksb(dvar_matrix a, const ivector& indx,dvar_vector b)
{
int i,ii=0,ip,j,iiflag=0;
dvariable sum;
int lb=a.colmin();
int ub=a.colmax();
for (i=lb;i<=ub;i++)
{
ip=indx(i);
sum=b(ip);
b(ip)=b(i);
if (iiflag)
{
for (j=ii;j<=i-1;j++)
{
sum -= a.elem(i,j)*b.elem(j);
}
}
else if (!ISZERO(value(sum)))
{
ii=i;
iiflag=1;
}
b(i)=sum;
}
for (i=ub;i>=lb;i--)
{
sum=b(i);
for (j=i+1;j<=ub;j++)
{ // !!! remove to show bug
sum -= a.elem(i,j)*b.elem(j);
} // !!! remove to show bug
b.elem(i)=sum/a.elem(i,i);
}
}
示例15: save_pars
void save_pars(dvar_vector& p,dvar_vector& mu,dvar_vector& sd,
dvector& mumin, dvector& mumax,dvector& sdmin, dvector& sdmax,
ivector& control)
{
ofstream outfile("mixture.par");
outfile << p.size() << "\n"; // The number of groups
outfile << control << "\n";
outfile << p << "\n\n";
outfile << mu << "\n\n";
outfile << sd << "\n\n";
outfile << mumin << "\n\n";
outfile << mumax << "\n\n";
outfile << sdmin << "\n\n";
outfile << sdmax;
}