本文整理汇总了C++中device_addr_t类的典型用法代码示例。如果您正苦于以下问题:C++ device_addr_t类的具体用法?C++ device_addr_t怎么用?C++ device_addr_t使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了device_addr_t类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: sep_indexed_dev_addrs
//! separate indexed device addresses into a vector of device addresses
device_addrs_t sep_indexed_dev_addrs(const device_addr_t &dev_addr){
//------------ support old deprecated way and print warning --------
if (dev_addr.has_key("addr") and not dev_addr["addr"].empty()){
std::vector<std::string> addrs; boost::split(addrs, dev_addr["addr"], boost::is_any_of(" "));
if (addrs.size() > 1){
device_addr_t fixed_dev_addr = dev_addr;
fixed_dev_addr.pop("addr");
for (size_t i = 0; i < addrs.size(); i++){
fixed_dev_addr[str(boost::format("addr%d") % i)] = addrs[i];
}
uhd::warning::post(
"addr = <space separated list of ip addresses> is deprecated.\n"
"To address a multi-device, use multiple <key><index> = <val>.\n"
"See the USRP-NXXX application notes. Two device example:\n"
" addr0 = 192.168.10.2\n"
" addr1 = 192.168.10.3\n"
);
return sep_indexed_dev_addrs(fixed_dev_addr);
}
}
//------------------------------------------------------------------
device_addrs_t dev_addrs;
BOOST_FOREACH(const std::string &key, dev_addr.keys()){
boost::cmatch matches;
if (not boost::regex_match(key.c_str(), matches, boost::regex("^(\\D+)(\\d*)$"))){
throw std::runtime_error("unknown key format: " + key);
}
std::string key_part(matches[1].first, matches[1].second);
std::string num_part(matches[2].first, matches[2].second);
size_t num = (num_part.empty())? 0 : boost::lexical_cast<size_t>(num_part);
dev_addrs.resize(std::max(num+1, dev_addrs.size()));
dev_addrs[num][key_part] = dev_addr[key];
}
return dev_addrs;
}
示例2: _parse
virtual void _parse(const device_addr_t& dev_args) {
//Extract parameters from dev_args
if (dev_args.has_key(_master_clock_rate.key()))
_master_clock_rate.parse(dev_args[_master_clock_rate.key()]);
if (dev_args.has_key(_send_frame_size.key()))
_send_frame_size.parse(dev_args[_send_frame_size.key()]);
if (dev_args.has_key(_recv_frame_size.key()))
_recv_frame_size.parse(dev_args[_recv_frame_size.key()]);
if (dev_args.has_key(_num_send_frames.key()))
_num_send_frames.parse(dev_args[_num_send_frames.key()]);
if (dev_args.has_key(_num_recv_frames.key()))
_num_recv_frames.parse(dev_args[_num_recv_frames.key()]);
if (dev_args.has_key(_send_buff_size.key()))
_send_buff_size.parse(dev_args[_send_buff_size.key()]);
if (dev_args.has_key(_recv_buff_size.key()))
_recv_buff_size.parse(dev_args[_recv_buff_size.key()]);
if (dev_args.has_key(_safe_mode.key()))
_safe_mode.parse(dev_args[_safe_mode.key()]);
if (dev_args.has_key(_loopback_mode.key()))
_loopback_mode.parse(dev_args[_loopback_mode.key()], false /* assert invalid */);
//Sanity check params
_enforce_range(_master_clock_rate, MIN_TICK_RATE, MAX_TICK_RATE);
_enforce_range(_send_frame_size, MIN_FRAME_SIZE, MAX_FRAME_SIZE);
_enforce_range(_recv_frame_size, MIN_FRAME_SIZE, MAX_FRAME_SIZE);
_enforce_range(_num_send_frames, (size_t)2, (size_t)UINT_MAX);
_enforce_range(_num_recv_frames, (size_t)2, (size_t)UINT_MAX);
}
示例3: make
udp_zero_copy::sptr udp_zero_copy::make(
const std::string &addr,
const std::string &port,
const zero_copy_xport_params &default_buff_args,
udp_zero_copy::buff_params& buff_params_out,
const device_addr_t &hints
){
//Initialize xport_params
zero_copy_xport_params xport_params = default_buff_args;
xport_params.recv_frame_size = size_t(hints.cast<double>("recv_frame_size", default_buff_args.recv_frame_size));
xport_params.num_recv_frames = size_t(hints.cast<double>("num_recv_frames", default_buff_args.num_recv_frames));
xport_params.send_frame_size = size_t(hints.cast<double>("send_frame_size", default_buff_args.send_frame_size));
xport_params.num_send_frames = size_t(hints.cast<double>("num_send_frames", default_buff_args.num_send_frames));
//extract buffer size hints from the device addr
size_t usr_recv_buff_size = size_t(hints.cast<double>("recv_buff_size", 0.0));
size_t usr_send_buff_size = size_t(hints.cast<double>("send_buff_size", 0.0));
if (hints.has_key("recv_buff_size")) {
if (usr_recv_buff_size < xport_params.recv_frame_size * xport_params.num_recv_frames) {
throw uhd::value_error((boost::format(
"recv_buff_size must be equal to or greater than (num_recv_frames * recv_frame_size) where num_recv_frames=%d, recv_frame_size=%d")
% xport_params.num_recv_frames % xport_params.recv_frame_size).str());
}
}
if (hints.has_key("send_buff_size")) {
if (usr_send_buff_size < xport_params.send_frame_size * xport_params.num_send_frames) {
throw uhd::value_error((boost::format(
"send_buff_size must be equal to or greater than (num_send_frames * send_frame_size) where num_send_frames=%d, send_frame_size=%d")
% xport_params.num_send_frames % xport_params.send_frame_size).str());
}
}
udp_zero_copy_asio_impl::sptr udp_trans(
new udp_zero_copy_asio_impl(addr, port, xport_params)
);
//call the helper to resize send and recv buffers
buff_params_out.recv_buff_size =
resize_buff_helper<asio::socket_base::receive_buffer_size>(udp_trans, usr_recv_buff_size, "recv");
buff_params_out.send_buff_size =
resize_buff_helper<asio::socket_base::send_buffer_size> (udp_trans, usr_send_buff_size, "send");
return udp_trans;
}
示例4: UHD_LOGGER_WARNING
device_addrs_t uhd::separate_device_addr(const device_addr_t &dev_addr){
//------------ support old deprecated way and print warning --------
if (dev_addr.has_key("addr") and not dev_addr["addr"].empty()){
std::vector<std::string> addrs; boost::split(addrs, dev_addr["addr"], boost::is_any_of(" "));
if (addrs.size() > 1){
device_addr_t fixed_dev_addr = dev_addr;
fixed_dev_addr.pop("addr");
for (size_t i = 0; i < addrs.size(); i++){
fixed_dev_addr[str(boost::format("addr%d") % i)] = addrs[i];
}
UHD_LOGGER_WARNING("UHD") <<
"addr = <space separated list of ip addresses> is deprecated.\n"
"To address a multi-device, use multiple <key><index> = <val>.\n"
"See the USRP-NXXX application notes. Two device example:\n"
" addr0 = 192.168.10.2\n"
" addr1 = 192.168.10.3\n"
;
return separate_device_addr(fixed_dev_addr);
}
}
//------------------------------------------------------------------
device_addrs_t dev_addrs(1); //must be at least one (obviously)
std::vector<std::string> global_keys; //keys that apply to all (no numerical suffix)
for(const std::string &key: dev_addr.keys()){
boost::cmatch matches;
if (not boost::regex_match(key.c_str(), matches, boost::regex("^(\\D+)(\\d*)$"))){
throw std::runtime_error("unknown key format: " + key);
}
std::string key_part(matches[1].first, matches[1].second);
std::string num_part(matches[2].first, matches[2].second);
if (num_part.empty()){ //no number? save it for later
global_keys.push_back(key);
continue;
}
const size_t num = boost::lexical_cast<size_t>(num_part);
dev_addrs.resize(std::max(num+1, dev_addrs.size()));
dev_addrs[num][key_part] = dev_addr[key];
}
//copy the global settings across all device addresses
for(device_addr_t &my_dev_addr: dev_addrs){
for(const std::string &global_key: global_keys){
my_dev_addr[global_key] = dev_addr[global_key];
}
}
return dev_addrs;
}
示例5: b200_find
/***********************************************************************
* Discovery
**********************************************************************/
static device_addrs_t b200_find(const device_addr_t &hint)
{
device_addrs_t b200_addrs;
//return an empty list of addresses when type is set to non-b200
if (hint.has_key("type") and hint["type"] != "b200") return b200_addrs;
//Return an empty list of addresses when an address or resource is specified,
//since an address and resource is intended for a different, non-USB, device.
if (hint.has_key("addr") || hint.has_key("resource")) return b200_addrs;
boost::uint16_t vid, pid;
if(hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type") && hint["type"] == "b200") {
vid = uhd::cast::hexstr_cast<boost::uint16_t>(hint.get("vid"));
pid = uhd::cast::hexstr_cast<boost::uint16_t>(hint.get("pid"));
} else {
vid = B200_VENDOR_ID;
pid = B200_PRODUCT_ID;
}
// Important note:
// The get device list calls are nested inside the for loop.
// This allows the usb guts to decontruct when not in use,
// so that re-enumeration after fw load can occur successfully.
// This requirement is a courtesy of libusb1.0 on windows.
//find the usrps and load firmware
size_t found = 0;
BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid)) {
//extract the firmware path for the b200
std::string b200_fw_image;
try{
b200_fw_image = find_image_path(hint.get("fw", B200_FW_FILE_NAME));
}
catch(...){
UHD_MSG(warning) << boost::format(
"Could not locate B200 firmware.\n"
"Please install the images package. %s\n"
) % print_images_error();
return b200_addrs;
}
UHD_LOG << "the firmware image: " << b200_fw_image << std::endl;
usb_control::sptr control;
try{control = usb_control::make(handle, 0);}
catch(const uhd::exception &){continue;} //ignore claimed
//check if fw was already loaded
if (!(handle->firmware_loaded()))
{
b200_iface::make(control)->load_firmware(b200_fw_image);
}
found++;
}
示例6: mb_args
/*****************************************************************************
* Structors
****************************************************************************/
mpmd_mboard_impl::mpmd_mboard_impl(
const device_addr_t& mb_args_, const std::string& rpc_server_addr)
: mb_args(mb_args_)
, rpc(make_mpm_rpc_client(rpc_server_addr, mb_args_))
, num_xbars(rpc->request<size_t>("get_num_xbars"))
, _claim_rpc(make_mpm_rpc_client(rpc_server_addr, mb_args, MPMD_CLAIMER_RPC_TIMEOUT))
// xbar_local_addrs is not yet valid after this!
, xbar_local_addrs(num_xbars, 0xFF)
, _xport_mgr(xport::mpmd_xport_mgr::make(mb_args))
{
UHD_LOGGER_TRACE("MPMD") << "Initializing mboard, connecting to RPC server address: "
<< rpc_server_addr << " mboard args: " << mb_args.to_string()
<< " number of crossbars: " << num_xbars;
_claimer_task = claim_device_and_make_task();
if (mb_args_.has_key(MPMD_MEAS_LATENCY_KEY)) {
measure_rpc_latency(rpc, MPMD_MEAS_LATENCY_DURATION);
}
/// Get device info
const auto device_info_dict = rpc->request<dev_info>("get_device_info");
for (const auto& info_pair : device_info_dict) {
device_info[info_pair.first] = info_pair.second;
}
UHD_LOGGER_TRACE("MPMD") << "MPM reports device info: " << device_info.to_string();
/// Get dboard info
const auto dboards_info = rpc->request<std::vector<dev_info>>("get_dboard_info");
UHD_ASSERT_THROW(this->dboard_info.size() == 0);
for (const auto& dboard_info_dict : dboards_info) {
uhd::device_addr_t this_db_info;
for (const auto& info_pair : dboard_info_dict) {
this_db_info[info_pair.first] = info_pair.second;
}
UHD_LOGGER_TRACE("MPMD")
<< "MPM reports dboard info for slot " << this->dboard_info.size() << ": "
<< this_db_info.to_string();
this->dboard_info.push_back(this_db_info);
}
for (const std::string& key : mb_args_.keys()) {
if (key.find("recv") != std::string::npos)
recv_args[key] = mb_args_[key];
if (key.find("send") != std::string::npos)
send_args[key] = mb_args_[key];
}
}
示例7: usrp1_find
/***********************************************************************
* Discovery
**********************************************************************/
static device_addrs_t usrp1_find(const device_addr_t &hint)
{
device_addrs_t usrp1_addrs;
//return an empty list of addresses when type is set to non-usrp1
if (hint.has_key("type") and hint["type"] != "usrp1") return usrp1_addrs;
//Return an empty list of addresses when an address is specified,
//since an address is intended for a different, non-USB, device.
if (hint.has_key("addr")) return usrp1_addrs;
boost::uint16_t vid = hint.has_key("uninit") ? FX2_VENDOR_ID : USRP1_VENDOR_ID;
boost::uint16_t pid = hint.has_key("uninit") ? FX2_PRODUCT_ID : USRP1_PRODUCT_ID;
// Important note:
// The get device list calls are nested inside the for loop.
// This allows the usb guts to decontruct when not in use,
// so that re-enumeration after fw load can occur successfully.
// This requirement is a courtesy of libusb1.0 on windows.
//find the usrps and load firmware
BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid)) {
//extract the firmware path for the USRP1
std::string usrp1_fw_image;
try {
usrp1_fw_image = find_image_path(hint.get("fw", "usrp1_fw.ihx"));
}
catch(...) {
UHD_MSG(warning) << boost::format(
"Could not locate USRP1 firmware.\n"
"Please install the images package.\n"
);
return usrp1_addrs;
}
UHD_LOG << "USRP1 firmware image: " << usrp1_fw_image << std::endl;
usb_control::sptr control;
try {
control = usb_control::make(handle, 0);
}
catch(const uhd::exception &) {
continue; //ignore claimed
}
fx2_ctrl::make(control)->usrp_load_firmware(usrp1_fw_image);
}
示例8: e100_find
/***********************************************************************
* Discovery
**********************************************************************/
static device_addrs_t e100_find(const device_addr_t &hint){
device_addrs_t e100_addrs;
//return an empty list of addresses when type is set to non-usrp-e
if (hint.has_key("type") and hint["type"] != "e100") return e100_addrs;
//Return an empty list of addresses when a resource is specified,
//since a resource is intended for a different, non-USB, device.
if (hint.has_key("resource")) return e100_addrs;
//device node not provided, assume its 0
if (not hint.has_key("node")){
device_addr_t new_addr = hint;
new_addr["node"] = "/dev/usrp_e0";
return e100_find(new_addr);
}
//use the given device node name
if (fs::exists(hint["node"])){
device_addr_t new_addr;
new_addr["type"] = "e100";
new_addr["node"] = fs::system_complete(fs::path(hint["node"])).string();
try{
i2c_iface::sptr i2c_iface = e100_ctrl::make_dev_i2c_iface(E100_I2C_DEV_NODE);
const mboard_eeprom_t mb_eeprom(*i2c_iface, E100_EEPROM_MAP_KEY);
new_addr["name"] = mb_eeprom["name"];
new_addr["serial"] = mb_eeprom["serial"];
}
catch(const std::exception &e){
new_addr["name"] = "";
new_addr["serial"] = "";
}
if (
(not hint.has_key("name") or hint["name"] == new_addr["name"]) and
(not hint.has_key("serial") or hint["serial"] == new_addr["serial"])
){
e100_addrs.push_back(new_addr);
}
}
return e100_addrs;
}
示例9: usrp1_find
/***********************************************************************
* Discovery
**********************************************************************/
static device_addrs_t usrp1_find(const device_addr_t &hint)
{
device_addrs_t usrp1_addrs;
//return an empty list of addresses when type is set to non-usrp1
if (hint.has_key("type") and hint["type"] != "usrp1") return usrp1_addrs;
//Return an empty list of addresses when an address or resource is specified,
//since an address and resource is intended for a different, non-USB, device.
if (hint.has_key("addr") || hint.has_key("resource")) return usrp1_addrs;
boost::uint16_t vid, pid;
if(hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type") && hint["type"] == "usrp1") {
vid = uhd::cast::hexstr_cast<boost::uint16_t>(hint.get("vid"));
pid = uhd::cast::hexstr_cast<boost::uint16_t>(hint.get("pid"));
} else {
vid = USRP1_VENDOR_ID;
pid = USRP1_PRODUCT_ID;
}
// Important note:
// The get device list calls are nested inside the for loop.
// This allows the usb guts to decontruct when not in use,
// so that re-enumeration after fw load can occur successfully.
// This requirement is a courtesy of libusb1.0 on windows.
//find the usrps and load firmware
size_t found = 0;
BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid)) {
//extract the firmware path for the USRP1
std::string usrp1_fw_image;
try{
usrp1_fw_image = find_image_path(hint.get("fw", "usrp1_fw.ihx"));
}
catch(...){
UHD_MSG(warning) << boost::format("Could not locate USRP1 firmware. %s") % print_utility_error("uhd_images_downloader.py");
}
UHD_LOG << "USRP1 firmware image: " << usrp1_fw_image << std::endl;
usb_control::sptr control;
try{control = usb_control::make(handle, 0);}
catch(const uhd::exception &){continue;} //ignore claimed
fx2_ctrl::make(control)->usrp_load_firmware(usrp1_fw_image);
found++;
}
示例10: b100_find
/***********************************************************************
* Discovery
**********************************************************************/
static device_addrs_t b100_find(const device_addr_t &hint)
{
device_addrs_t b100_addrs;
//return an empty list of addresses when type is set to non-b100
if (hint.has_key("type") and hint["type"] != "b100") return b100_addrs;
//Return an empty list of addresses when an address is specified,
//since an address is intended for a different, non-USB, device.
if (hint.has_key("addr")) return b100_addrs;
unsigned int vid, pid;
if(hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type") && hint["type"] == "b100") {
sscanf(hint.get("vid").c_str(), "%x", &vid);
sscanf(hint.get("pid").c_str(), "%x", &pid);
} else {
vid = B100_VENDOR_ID;
pid = B100_PRODUCT_ID;
}
// Important note:
// The get device list calls are nested inside the for loop.
// This allows the usb guts to decontruct when not in use,
// so that re-enumeration after fw load can occur successfully.
// This requirement is a courtesy of libusb1.0 on windows.
//find the usrps and load firmware
size_t found = 0;
BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid)) {
//extract the firmware path for the b100
std::string b100_fw_image;
try{
b100_fw_image = find_image_path(hint.get("fw", B100_FW_FILE_NAME));
}
catch(...){
UHD_MSG(warning) << boost::format("Could not locate B100 firmware. %s\n") % print_images_error();
return b100_addrs;
}
UHD_LOG << "the firmware image: " << b100_fw_image << std::endl;
usb_control::sptr control;
try{control = usb_control::make(handle, 0);}
catch(const uhd::exception &){continue;} //ignore claimed
fx2_ctrl::make(control)->usrp_load_firmware(b100_fw_image);
found++;
}
示例11: make
udp_zero_copy::sptr udp_zero_copy::make(const std::string& addr,
const std::string& port,
const zero_copy_xport_params& default_buff_args,
udp_zero_copy::buff_params& buff_params_out,
const device_addr_t& hints)
{
// Initialize xport_params
zero_copy_xport_params xport_params = default_buff_args;
xport_params.recv_frame_size =
size_t(hints.cast<double>("recv_frame_size", default_buff_args.recv_frame_size));
xport_params.num_recv_frames =
size_t(hints.cast<double>("num_recv_frames", default_buff_args.num_recv_frames));
xport_params.send_frame_size =
size_t(hints.cast<double>("send_frame_size", default_buff_args.send_frame_size));
xport_params.num_send_frames =
size_t(hints.cast<double>("num_send_frames", default_buff_args.num_send_frames));
xport_params.recv_buff_size =
size_t(hints.cast<double>("recv_buff_size", default_buff_args.recv_buff_size));
xport_params.send_buff_size =
size_t(hints.cast<double>("send_buff_size", default_buff_args.send_buff_size));
if (xport_params.num_recv_frames == 0) {
UHD_LOG_TRACE("UDP",
"Default value for num_recv_frames: " << UDP_ZERO_COPY_DEFAULT_NUM_FRAMES);
xport_params.num_recv_frames = UDP_ZERO_COPY_DEFAULT_NUM_FRAMES;
}
if (xport_params.num_send_frames == 0) {
UHD_LOG_TRACE("UDP",
"Default value for no num_send_frames: " << UDP_ZERO_COPY_DEFAULT_NUM_FRAMES);
xport_params.num_send_frames = UDP_ZERO_COPY_DEFAULT_NUM_FRAMES;
}
if (xport_params.recv_frame_size == 0) {
UHD_LOG_TRACE("UDP",
"Using default value for recv_frame_size: "
<< UDP_ZERO_COPY_DEFAULT_FRAME_SIZE);
xport_params.recv_frame_size = UDP_ZERO_COPY_DEFAULT_FRAME_SIZE;
}
if (xport_params.send_frame_size == 0) {
UHD_LOG_TRACE("UDP",
"Using default value for send_frame_size, "
<< UDP_ZERO_COPY_DEFAULT_FRAME_SIZE);
xport_params.send_frame_size = UDP_ZERO_COPY_DEFAULT_FRAME_SIZE;
}
if (xport_params.recv_buff_size == 0) {
UHD_LOG_TRACE("UDP", "Using default value for recv_buff_size");
xport_params.recv_buff_size = std::max(UDP_ZERO_COPY_DEFAULT_BUFF_SIZE,
xport_params.num_recv_frames * MAX_ETHERNET_MTU);
UHD_LOG_TRACE("UDP",
"Using default value for recv_buff_size" << xport_params.recv_buff_size);
}
if (xport_params.send_buff_size == 0) {
UHD_LOG_TRACE("UDP", "default_buff_args has no send_buff_size");
xport_params.send_buff_size = std::max(UDP_ZERO_COPY_DEFAULT_BUFF_SIZE,
xport_params.num_send_frames * MAX_ETHERNET_MTU);
}
#if defined(UHD_PLATFORM_MACOS) || defined(UHD_PLATFORM_BSD)
// limit default buffer size on macos to avoid the warning issued by
// resize_buff_helper
if (not hints.has_key("recv_buff_size")
and xport_params.recv_buff_size > MAX_BUFF_SIZE_ETH_MACOS) {
xport_params.recv_buff_size = MAX_BUFF_SIZE_ETH_MACOS;
}
if (not hints.has_key("send_buff_size")
and xport_params.send_buff_size > MAX_BUFF_SIZE_ETH_MACOS) {
xport_params.send_buff_size = MAX_BUFF_SIZE_ETH_MACOS;
}
#endif
udp_zero_copy_asio_impl::sptr udp_trans(
new udp_zero_copy_asio_impl(addr, port, xport_params));
// call the helper to resize send and recv buffers
buff_params_out.recv_buff_size =
resize_buff_helper<asio::socket_base::receive_buffer_size>(
udp_trans, xport_params.recv_buff_size, "recv");
buff_params_out.send_buff_size =
resize_buff_helper<asio::socket_base::send_buffer_size>(
udp_trans, xport_params.send_buff_size, "send");
if (buff_params_out.recv_buff_size
< xport_params.num_recv_frames * MAX_ETHERNET_MTU) {
UHD_LOG_WARNING("UDP",
"The current recv_buff_size of "
<< xport_params.recv_buff_size
<< " is less than the minimum recommended size of "
<< xport_params.num_recv_frames * MAX_ETHERNET_MTU
<< " and may result in dropped packets on some NICs");
}
if (buff_params_out.send_buff_size
< xport_params.num_send_frames * MAX_ETHERNET_MTU) {
UHD_LOG_WARNING("UDP",
"The current send_buff_size of "
<< xport_params.send_buff_size
<< " is less than the minimum recommended size of "
<< xport_params.num_send_frames * MAX_ETHERNET_MTU
<< " and may result in dropped packets on some NICs");
}
//.........这里部分代码省略.........
示例12: x300_setup_session
static void x300_setup_session(x300_session_t& session,
const device_addr_t& args,
const std::string& filepath,
const std::string& outpath)
{
device_addrs_t devs = x300_find(args);
if (devs.size() == 0) {
session.found = false;
return;
} else if (devs.size() > 1) {
std::string err_msg =
"Could not resolve given args to a single X-Series device.\n"
"Applicable devices:\n";
for (const uhd::device_addr_t& dev : devs) {
std::string identifier = dev.has_key("addr") ? "addr" : "resource";
err_msg += str(boost::format(" * %s (%s=%s)\n") % dev.get("product", "X3XX")
% identifier % dev.get(identifier));
}
err_msg += "\nSpecify one of these devices with the given args to load an image "
"onto it.";
throw uhd::runtime_error(err_msg);
}
session.found = true;
session.dev_addr = devs[0];
session.ethernet = session.dev_addr.has_key("addr");
if (session.ethernet) {
session.ip_addr = session.dev_addr["addr"];
session.configure = args.has_key("configure");
session.write_xport = udp_simple::make_connected(
session.ip_addr, BOOST_STRINGIZE(X300_FPGA_PROG_UDP_PORT));
session.read_xport = udp_simple::make_connected(
session.ip_addr, BOOST_STRINGIZE(X300_FPGA_READ_UDP_PORT));
session.verify = args.has_key("verify");
session.download = args.has_key("download");
} else {
session.resource = session.dev_addr["resource"];
session.rpc_port = args.get("rpc-port", "5444");
}
/*
* The user can specify an FPGA type (1G, HGS, XGS), rather than a filename. If the
* user does not specify one, this will default to the type currently on the device.
* If this cannot be determined, then the user is forced to specify a filename.
*/
session.fpga_type = args.get("fpga", session.dev_addr.get("fpga", ""));
if (filepath == "") {
if (!session.dev_addr.has_key("product") or session.fpga_type == "") {
throw uhd::runtime_error(
"Found a device but could not auto-generate an image filename.");
} else {
std::string fpga_file_type = to_lower_copy(session.dev_addr["product"]);
if (fpga_file_type == "ni-2974") {
fpga_file_type = "x310";
}
session.filepath = find_image_path(
str(boost::format("usrp_%s_fpga_%s.bit")
% fpga_file_type % session.fpga_type));
}
} else
session.filepath = filepath;
/*
* The user can specify an output image path, or UHD will use the
* system temporary path by default
*/
if (outpath == "") {
if (!session.dev_addr.has_key("product") or session.fpga_type == "") {
throw uhd::runtime_error(
"Found a device but could not auto-generate an image filename.");
}
std::string filename =
str(boost::format("usrp_%s_fpga_%s")
% (to_lower_copy(session.dev_addr["product"])) % session.fpga_type);
session.outpath = get_tmp_path() + "/" + filename;
} else {
session.outpath = outpath;
}
// Validate image
x300_validate_image(session);
}
示例13: UHD_LOG_TRACE
/******************************************************************************
* Static Helpers
*****************************************************************************/
boost::optional<device_addr_t> mpmd_mboard_impl::is_device_reachable(
const device_addr_t& device_addr)
{
UHD_LOG_TRACE(
"MPMD", "Checking accessibility of device `" << device_addr.to_string() << "'");
UHD_ASSERT_THROW(device_addr.has_key(xport::MGMT_ADDR_KEY));
const std::string rpc_addr = device_addr.get(xport::MGMT_ADDR_KEY);
const size_t rpc_port =
device_addr.cast<size_t>(mpmd_impl::MPM_RPC_PORT_KEY, mpmd_impl::MPM_RPC_PORT);
auto rpcc = uhd::rpc_client::make(rpc_addr, rpc_port);
// 1) Read back device info
dev_info device_info_dict;
try {
device_info_dict =
rpcc->request<dev_info>(MPMD_SHORT_RPC_TIMEOUT, "get_device_info");
} catch (const uhd::runtime_error& e) {
UHD_LOG_ERROR("MPMD", e.what());
} catch (...) {
UHD_LOG_DEBUG("MPMD",
"Unexpected exception when trying to query device info. Flagging "
"device as unreachable.");
return boost::optional<device_addr_t>();
}
// 2) Check for local device
if (device_info_dict.count("connection")
and device_info_dict.at("connection") == "local") {
UHD_LOG_TRACE("MPMD", "Device is local, flagging as reachable.");
return boost::optional<device_addr_t>(device_addr);
}
// 3) Check for network-reachable device
// Note: This makes the assumption that devices will always allow RPC
// connections on their CHDR addresses.
const std::vector<std::string> addr_keys = {"second_addr", "addr"};
for (const auto& addr_key : addr_keys) {
if (not device_info_dict.count(addr_key)) {
continue;
}
const std::string chdr_addr = device_info_dict.at(addr_key);
UHD_LOG_TRACE("MPMD", "Checking reachability via network addr " << chdr_addr);
try {
// First do an MPM ping -- there is some issue with rpclib that can
// lead to indefinite timeouts
const std::string mpm_discovery_port =
device_addr.get(mpmd_impl::MPM_DISCOVERY_PORT_KEY,
std::to_string(mpmd_impl::MPM_DISCOVERY_PORT));
if (!is_pingable(chdr_addr, mpm_discovery_port)) {
UHD_LOG_TRACE("MPMD", "Cannot MPM ping, assuming device is unreachable.");
continue;
}
UHD_LOG_TRACE("MPMD", "Was able to ping device, trying RPC connection.");
auto chdr_rpcc = uhd::rpc_client::make(chdr_addr, rpc_port);
auto dev_info_chdr =
chdr_rpcc->request<dev_info>(MPMD_SHORT_RPC_TIMEOUT, "get_device_info");
if (dev_info_chdr["serial"] != device_info_dict["serial"]) {
UHD_LOG_DEBUG("MPMD",
boost::format("Connected to CHDR interface, but got wrong device. "
"Tried to reach serial %s, got %s")
% device_info_dict["serial"] % dev_info_chdr["serial"]);
return boost::optional<device_addr_t>();
} else {
UHD_LOG_TRACE("MPMD",
boost::format("Reachable device matches expected device (serial=%s)")
% device_info_dict["serial"]);
}
device_addr_t device_addr_copy = device_addr;
device_addr_copy["addr"] = chdr_addr;
return boost::optional<device_addr_t>(device_addr_copy);
} catch (...) {
UHD_LOG_DEBUG(
"MPMD", "Failed to reach device on network addr " << chdr_addr << ".");
}
}
// If everything fails, we probably can't talk to this chap.
UHD_LOG_TRACE(
"MPMD", "All reachability checks failed -- assuming device is not reachable.");
return boost::optional<device_addr_t>();
}
示例14: make
/***********************************************************************
* Multi USRP Clock factory function
**********************************************************************/
multi_usrp_clock::sptr multi_usrp_clock::make(const device_addr_t &dev_addr){
UHD_LOG << "multi_usrp_clock::make with args " << dev_addr.to_pp_string() << std::endl;
return sptr(new multi_usrp_clock_impl(dev_addr));
}
示例15: if
/***********************************************************************
* Structors
**********************************************************************/
usrp2_mboard_impl::usrp2_mboard_impl(
size_t index,
transport::udp_simple::sptr ctrl_transport,
transport::zero_copy_if::sptr data_transport,
transport::zero_copy_if::sptr err0_transport,
const device_addr_t &device_args,
size_t recv_samps_per_packet
):
_index(index),
_iface(usrp2_iface::make(ctrl_transport))
{
//Send a small data packet so the usrp2 knows the udp source port.
//This setup must happen before further initialization occurs
//or the async update packets will cause ICMP destination unreachable.
transport::managed_send_buffer::sptr send_buff;
static const boost::uint32_t data[2] = {
uhd::htonx(boost::uint32_t(0 /* don't care seq num */)),
uhd::htonx(boost::uint32_t(USRP2_INVALID_VRT_HEADER))
};
send_buff = data_transport->get_send_buff();
std::memcpy(send_buff->cast<void*>(), &data, sizeof(data));
send_buff->commit(sizeof(data));
send_buff = err0_transport->get_send_buff();
std::memcpy(send_buff->cast<void*>(), &data, sizeof(data));
send_buff->commit(sizeof(data));
//contruct the interfaces to mboard perifs
_clock_ctrl = usrp2_clock_ctrl::make(_iface);
_codec_ctrl = usrp2_codec_ctrl::make(_iface);
// _gps_ctrl = gps_ctrl::make(
// _iface->get_gps_write_fn(),
// _iface->get_gps_read_fn());
//if(_gps_ctrl->gps_detected()) std::cout << "GPS time: " << _gps_ctrl->get_time() << std::endl;
//TODO move to dsp impl...
//load the allowed decim/interp rates
//_USRP2_RATES = range(4, 128+1, 1) + range(130, 256+1, 2) + range(260, 512+1, 4)
_allowed_decim_and_interp_rates.clear();
for (size_t i = 4; i <= 128; i+=1){
_allowed_decim_and_interp_rates.push_back(i);
}
for (size_t i = 130; i <= 256; i+=2){
_allowed_decim_and_interp_rates.push_back(i);
}
for (size_t i = 260; i <= 512; i+=4){
_allowed_decim_and_interp_rates.push_back(i);
}
//setup the vrt rx registers
_iface->poke32(_iface->regs.rx_ctrl_clear_overrun, 1); //reset
_iface->poke32(_iface->regs.rx_ctrl_nsamps_per_pkt, recv_samps_per_packet);
_iface->poke32(_iface->regs.rx_ctrl_nchannels, 1);
_iface->poke32(_iface->regs.rx_ctrl_vrt_header, 0
| (0x1 << 28) //if data with stream id
| (0x1 << 26) //has trailer
| (0x3 << 22) //integer time other
| (0x1 << 20) //fractional time sample count
);
_iface->poke32(_iface->regs.rx_ctrl_vrt_stream_id, usrp2_impl::RECV_SID);
_iface->poke32(_iface->regs.rx_ctrl_vrt_trailer, 0);
_iface->poke32(_iface->regs.time64_tps, size_t(get_master_clock_freq()));
//init the tx control registers
_iface->poke32(_iface->regs.tx_ctrl_clear_state, 1); //reset
_iface->poke32(_iface->regs.tx_ctrl_num_chan, 0); //1 channel
_iface->poke32(_iface->regs.tx_ctrl_report_sid, usrp2_impl::ASYNC_SID);
_iface->poke32(_iface->regs.tx_ctrl_policy, U2_FLAG_TX_CTRL_POLICY_NEXT_PACKET);
//setting the cycles per update (disabled by default)
const double ups_per_sec = device_args.cast<double>("ups_per_sec", 0.0);
if (ups_per_sec > 0.0){
const size_t cycles_per_up = size_t(_clock_ctrl->get_master_clock_rate()/ups_per_sec);
_iface->poke32(_iface->regs.tx_ctrl_cycles_per_up, U2_FLAG_TX_CTRL_UP_ENB | cycles_per_up);
}
//setting the packets per update (enabled by default)
const double ups_per_fifo = device_args.cast<double>("ups_per_fifo", 8.0);
if (ups_per_fifo > 0.0){
const size_t packets_per_up = size_t(usrp2_impl::sram_bytes/ups_per_fifo/data_transport->get_send_frame_size());
_iface->poke32(_iface->regs.tx_ctrl_packets_per_up, U2_FLAG_TX_CTRL_UP_ENB | packets_per_up);
}
//init the ddc
init_ddc_config();
//init the duc
init_duc_config();
//initialize the clock configuration
if (device_args.has_key("mimo_mode")){
if (device_args["mimo_mode"] == "master"){
_mimo_clocking_mode_is_master = true;
}
else if (device_args["mimo_mode"] == "slave"){
_mimo_clocking_mode_is_master = false;
}
//.........这里部分代码省略.........