本文整理汇总了C++中dd_real类的典型用法代码示例。如果您正苦于以下问题:C++ dd_real类的具体用法?C++ dd_real怎么用?C++ dd_real使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了dd_real类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: exp
/* Exponential. Computes exp(x) in double-double precision. */
dd_real exp(const dd_real &a) {
/* Strategy: We first reduce the size of x by noting that
exp(kr + m * log(2)) = 2^m * exp(r)^k
where m and k are integers. By choosing m appropriately
we can make |kr| <= log(2) / 2 = 0.347. Then exp(r) is
evaluated using the familiar Taylor series. Reducing the
argument substantially speeds up the convergence. */
const double k = 512.0;
const double inv_k = 1.0 / k;
if (a.x[0] <= -709.0)
return 0.0;
if (a.x[0] >= 709.0)
return dd_real::_inf;
if (a.is_zero())
return 1.0;
if (a.is_one())
return dd_real::_e;
double m = std::floor(a.x[0] / dd_real::_log2.x[0] + 0.5);
dd_real r = mul_pwr2(a - dd_real::_log2 * m, inv_k);
dd_real s, t, p;
p = sqr(r);
s = r + mul_pwr2(p, 0.5);
p *= r;
t = p * dd_real(inv_fact[0][0], inv_fact[0][1]);
int i = 0;
do {
s += t;
p *= r;
++i;
t = p * dd_real(inv_fact[i][0], inv_fact[i][1]);
} while (std::abs(to_double(t)) > inv_k * dd_real::_eps && i < 5);
s += t;
s = mul_pwr2(s, 2.0) + sqr(s);
s = mul_pwr2(s, 2.0) + sqr(s);
s = mul_pwr2(s, 2.0) + sqr(s);
s = mul_pwr2(s, 2.0) + sqr(s);
s = mul_pwr2(s, 2.0) + sqr(s);
s = mul_pwr2(s, 2.0) + sqr(s);
s = mul_pwr2(s, 2.0) + sqr(s);
s = mul_pwr2(s, 2.0) + sqr(s);
s = mul_pwr2(s, 2.0) + sqr(s);
s += 1.0;
return ldexp(s, static_cast<int>(m));
}
示例2: exp
/* Exponential. Computes exp(x) in double-double precision. */
dd_real exp(const dd_real &a) {
/* Strategy: We first reduce the size of x by noting that
exp(kr + m) = exp(m) * exp(r)^k
Thus by choosing m to be a multiple of log(2) closest
to x, we can make |kr| <= log(2) / 2 = 0.3466. Now
we can set k = 64, so that |r| <= 0.000542. Then
exp(x) = exp(kr + s log 2) = (2^s) * [exp(r)]^64
Then exp(r) is evaluated using the familiar Taylor series.
Reducing the argument substantially speeds up the convergence.
*/
const int k = 64;
if (a.hi <= -709.0)
return 0.0;
if (a.hi >= 709.0)
return dd_real::_inf;
if (a.is_zero()) {
return 1.0;
}
if (a.is_one()) {
return dd_real::_e;
}
int z = to_int(nint(a / dd_real::_log2));
dd_real r = (a - dd_real::_log2 * static_cast<double>(z)) / static_cast<double>(k);
dd_real s, t, f, p;
double m;
s = 1.0 + r;
p = sqr(r);
m = 2.0;
f = 2.0;
t = p / f;
do {
s += t;
p *= r;
m += 1.0;
f *= m;
t = p / f;
} while (std::abs(to_double(t)) > 1.0e-35);
s += t;
r = pow(s, k);
r = mul_pwr2(r, std::ldexp(1.0, z));
return r;
}
示例3: sincos_taylor
/* Computes sin(a) and cos(a) using Taylor series.
Assumes |a| <= pi/32. */
static void sincos_taylor(const dd_real &a,
dd_real &sin_a, dd_real &cos_a) {
const double thresh = 1.0e-35 * std::abs(to_double(a));
dd_real t; /* Term being added. */
dd_real s; /* Current partial sum. */
dd_real x; /* = -sqr(a) */
double m;
if (a.is_zero()) {
sin_a = 0.0;
cos_a = 1.0;
return;
}
x = -sqr(a);
s = a;
t = a;
m = 1.0;
do {
m += 2.0;
t *= x;
t /= (m*(m-1.0));
s += t;
} while (std::abs(to_double(t)) > thresh);
sin_a = s;
cos_a = sqrt(1.0 - sqr(s));
}
示例4: logarithm
/* Logarithm. Computes log(x) in double-double precision.
This is a natural logarithm (i.e., base e). */
dd_real log(const dd_real &a) {
/* Strategy. The Taylor series for log converges much more
slowly than that of exp, due to the lack of the factorial
term in the denominator. Hence this routine instead tries
to determine the root of the function
f(x) = exp(x) - a
using Newton iteration. The iteration is given by
x' = x - f(x)/f'(x)
= x - (1 - a * exp(-x))
= x + a * exp(-x) - 1.
Only one iteration is needed, since Newton's iteration
approximately doubles the number of digits per iteration. */
if (a.is_one()) {
return 0.0;
}
if (a.hi <= 0.0) {
dd_real::abort("(dd_real::log): Non-positive argument.");
return dd_real::_nan;
}
dd_real x = std::log(a.hi); /* Initial approximation */
x = x + a * exp(-x) - 1.0;
return x;
}
示例5: npwr
/* Computes the n-th power of a double-double number.
NOTE: 0^0 causes an error. */
dd_real npwr(const dd_real &a, int n) {
if (n == 0) {
if (a.is_zero()) {
dd_real::abort("(dd_real::npwr): Invalid argument.");
return dd_real::_nan;
}
return 1.0;
}
dd_real r = a;
dd_real s = 1.0;
int N = std::abs(n);
if (N > 1) {
/* Use binary exponentiation */
while (N > 0) {
if (N % 2 == 1) {
s *= r;
}
N /= 2;
if (N > 0)
r = sqr(r);
}
} else {
s = r;
}
/* Compute the reciprocal if n is negative. */
if (n < 0)
return (1.0 / s);
return s;
}
示例6: sinh
dd_real sinh(const dd_real &a) {
if (a.is_zero()) {
return 0.0;
}
if (abs(a) > 0.05) {
dd_real ea = exp(a);
return mul_pwr2(ea - inv(ea), 0.5);
}
/* since a is small, using the above formula gives
a lot of cancellation. So use Taylor series. */
dd_real s = a;
dd_real t = a;
dd_real r = sqr(t);
double m = 1.0;
double thresh = std::abs((to_double(a)) * dd_real::_eps);
do {
m += 2.0;
t *= r;
t /= (m-1) * m;
s += t;
} while (abs(t) > thresh);
return s;
}
示例7: cos
dd_real cos(const dd_real &a) {
if (a.is_zero()) {
return 1.0;
}
/* First reduce modulo 2*pi so that |r| <= pi. */
dd_real r = drem(a, dd_real::_2pi);
/* Now reduce by modulo pi/2 and then by pi/16 so that
we obtain numbers a, b, and t. */
dd_real t;
dd_real sin_t, cos_t;
dd_real s, c;
int j = to_int(divrem(r, dd_real::_pi2, t));
int abs_j = std::abs(j);
int k = to_int(divrem(t, dd_real::_pi16, t));
int abs_k = std::abs(k);
if (abs_j > 2) {
dd_real::abort("(dd_real::cos): Cannot reduce modulo pi/2.");
return dd_real::_nan;
}
if (abs_k > 4) {
dd_real::abort("(dd_real::cos): Cannot reduce modulo pi/16.");
return dd_real::_nan;
}
sincos_taylor(t, sin_t, cos_t);
if (abs_k == 0) {
s = sin_t;
c = cos_t;
} else {
dd_real u = dd_real::cos_table[abs_k-1];
dd_real v = dd_real::sin_table[abs_k-1];
if (k > 0) {
s = u * sin_t + v * cos_t;
c = u * cos_t - v * sin_t;
} else {
s = u * sin_t - v * cos_t;
c = u * cos_t + v * sin_t;
}
}
if (abs_j == 0) {
r = c;
} else if (j == 1) {
r = -s;
} else if (j == -1) {
r = s;
} else {
r = -c;
}
return r;
}
示例8: cosh
dd_real cosh(const dd_real &a) {
if (a.is_zero()) {
return 1.0;
}
dd_real ea = exp(a);
return mul_pwr2(ea + inv(ea), 0.5);
}
示例9: tanh
dd_real tanh(const dd_real &a) {
if (a.is_zero()) {
return 0.0;
}
dd_real ea = exp(a);
dd_real inv_ea = inv(ea);
return (ea - inv_ea) / (ea + inv_ea);
}
示例10: atan2
dd_real atan2(const dd_real &y, const dd_real &x) {
/* Strategy: Instead of using Taylor series to compute
arctan, we instead use Newton's iteration to solve
the equation
sin(z) = y/r or cos(z) = x/r
where r = sqrt(x^2 + y^2).
The iteration is given by
z' = z + (y - sin(z)) / cos(z) (for equation 1)
z' = z - (x - cos(z)) / sin(z) (for equation 2)
Here, x and y are normalized so that x^2 + y^2 = 1.
If |x| > |y|, then first iteration is used since the
denominator is larger. Otherwise, the second is used.
*/
if (x.is_zero()) {
if (y.is_zero()) {
/* Both x and y is zero. */
dd_real::abort("(dd_real::atan2): Both arguments zero.");
return dd_real::_nan;
}
return (y.is_positive()) ? dd_real::_pi2 : -dd_real::_pi2;
} else if (y.is_zero()) {
return (x.is_positive()) ? dd_real(0.0) : dd_real::_pi;
}
if (x == y) {
return (y.is_positive()) ? dd_real::_pi4 : -dd_real::_3pi4;
}
if (x == -y) {
return (y.is_positive()) ? dd_real::_3pi4 : -dd_real::_pi4;
}
dd_real r = sqrt(sqr(x) + sqr(y));
dd_real xx = x / r;
dd_real yy = y / r;
/* Compute double precision approximation to atan. */
dd_real z = std::atan2(to_double(y), to_double(x));
dd_real sin_z, cos_z;
if (xx > yy) {
/* Use Newton iteration 1. z' = z + (y - sin(z)) / cos(z) */
sincos(z, sin_z, cos_z);
z += (yy - sin_z) / cos_z;
} else {
/* Use Newton iteration 2. z' = z - (x - cos(z)) / sin(z) */
sincos(z, sin_z, cos_z);
z -= (xx - cos_z) / sin_z;
}
return z;
}
示例11: nroot
/* Computes the n-th root of the double-double number a.
NOTE: n must be a positive integer.
NOTE: If n is even, then a must not be negative. */
dd_real nroot(const dd_real &a, int n) {
/* Strategy: Use Newton iteration for the function
f(x) = x^(-n) - a
to find its root a^{-1/n}. The iteration is thus
x' = x + x * (1 - a * x^n) / n
which converges quadratically. We can then find
a^{1/n} by taking the reciprocal.
*/
if (n <= 0) {
dd_real::abort("(dd_real::nroot): N must be positive.");
return dd_real::_nan;
}
if (n%2 == 0 && a.is_negative()) {
dd_real::abort("(dd_real::nroot): Negative argument.");
return dd_real::_nan;
}
if (n == 1) {
return a;
}
if (n == 2) {
return sqrt(a);
}
if (a.is_zero())
return 0.0;
/* Note a^{-1/n} = exp(-log(a)/n) */
dd_real r = abs(a);
dd_real x = std::exp(-std::log(r.hi) / n);
/* Perform Newton's iteration. */
x += x * (1.0 - r * npwr(x, n)) / static_cast<double>(n);
if (a.hi < 0.0)
x = -x;
return 1.0/x;
}
示例12: sincos_taylor
static void sincos_taylor(const dd_real &a,
dd_real &sin_a, dd_real &cos_a) {
if (a.is_zero()) {
sin_a = 0.0;
cos_a = 1.0;
return;
}
sin_a = sin_taylor(a);
cos_a = sqrt(1.0 - sqr(sin_a));
}
示例13: asin
dd_real asin(const dd_real &a) {
dd_real abs_a = abs(a);
if (abs_a > 1.0) {
dd_real::abort("(dd_real::asin): Argument out of domain.");
return dd_real::_nan;
}
if (abs_a.is_one()) {
return (a.is_positive()) ? dd_real::_pi2 : -dd_real::_pi2;
}
return atan2(a, sqrt(1.0 - sqr(a)));
}
示例14: acos
dd_real acos(const dd_real &a) {
dd_real abs_a = abs(a);
if (abs_a > 1.0) {
dd_real::abort("(dd_real::acos): Argument out of domain.");
return dd_real::_nan;
}
if (abs_a.is_one()) {
return (a.is_positive()) ? dd_real(0.0) : dd_real::_pi;
}
return atan2(sqrt(1.0 - sqr(a)), a);
}
示例15: sqrt
/* Computes the square root of the double-double number dd.
NOTE: dd must be a non-negative number. */
QD_API dd_real sqrt(const dd_real &a) {
/* Strategy: Use Karp's trick: if x is an approximation
to sqrt(a), then
sqrt(a) = a*x + [a - (a*x)^2] * x / 2 (approx)
The approximation is accurate to twice the accuracy of x.
Also, the multiplication (a*x) and [-]*x can be done with
only half the precision.
*/
if (a.is_zero())
return 0.0;
if (a.is_negative()) {
dd_real::abort("(dd_real::sqrt): Negative argument.");
return dd_real::_nan;
}
double x = 1.0 / std::sqrt(a.hi);
double ax = a.hi * x;
return dd_real::add(ax, (a - dd_real::sqr(ax)).hi * (x * 0.5));
}