本文整理汇总了C++中complex类的典型用法代码示例。如果您正苦于以下问题:C++ complex类的具体用法?C++ complex怎么用?C++ complex使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了complex类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
complex<typename boost::units::subtract_typeof_helper<X,Y>::type>
operator-(const complex<X>& x,const complex<Y>& y)
{
typedef typename boost::units::subtract_typeof_helper<X,Y>::type type;
return complex<type>(x.real()-y.real(),x.imag()-y.imag());
}
示例2: conj
void EMLTracker::integrate(complex<double> in)
{
localReplica.tick();
// First bring the signal level of the input to the same as the
// local replicas
in *= baseGain;
complex<double> carrier = localReplica.getCarrier();
complex<double> code = localReplica.getCode() ? plusOne : minusOne;
// mix in the carrier local replica
complex<double> m0 = in * conj(carrier);
// and sum them up.. (yea, the conj of the codes should be a NoOp)
code = conj(code);
early.process(m0, code);
prompt.process(m0, code);
late.process(m0, code);
// Update our sums for normalizing things...
complex<double> lr = conj(carrier) * code;
inSumSq += in.real()*in.real() + in.imag()*in.imag();
lrSumSq += lr.real()*lr.real() + lr.imag()*lr.imag();
}
示例3:
complex complex::operator *(complex x)
{
complex y;
y.Re=Re*x.take_Re()-Im*x.take_Im();
y.Im=Re*x.take_Im()+Im*x.take_Re();
return y;
}
示例4: exponentialIntegral
/** Implement Exponential Integral function, E1(z), based on formulaes in
*Abramowitz and Stegun (A&S)
* In fact this implementation returns exp(z)*E1(z) where z is a complex number
*
* @param z :: input
* @return exp(z)*E1(z)
*/
complex<double> exponentialIntegral(const complex<double> &z) {
double z_abs = abs(z);
if (z_abs == 0.0) {
// Basically function is infinite in along the real axis for this case
return complex<double>(std::numeric_limits<double>::max(), 0.0);
} else if (z_abs < 10.0) // 10.0 is a guess based on formula 5.1.55 (no idea
// how good it really is)
{
// use formula 5.1.11 in A&S. rewrite last term in 5.1.11 as
// x*sum_n=0 (-1)^n x^n / (n+1)*(n+1)! and then calculate the
// terms in the sum recursively
complex<double> z1(1.0, 0.0);
complex<double> z2(1.0, 0.0);
for (int i = 1; i <= 100; i++) // is max of 100 here best?
{
z2 = -static_cast<double>(i) * (z2 * z) / ((i + 1.0) * (i + 1.0));
z1 += z2;
if (abs(z2) < 1.0E-10 * abs(z1))
break; // i.e. if break loop if little change to term added
}
return exp(z) * (-log(z) - M_EULER + z * z1);
} else {
// use formula 5.1.22 in A&S. See discussion page 231
complex<double> z1(0.0, 0.0);
for (int i = 20; i >= 1; i--) // not sure if 20 is always sensible?
z1 = static_cast<double>(i) / (1.0 + static_cast<double>(i) / (z + z1));
complex<double> retVal = 1.0 / (z + z1);
if (z.real() <= 0.0 && z.imag() == 0.0)
retVal -= exp(z) * complex<double>(0.0, 1.0) * M_PI; // see formula 5.1.7
return retVal;
}
}
示例5: cos
complex<double> cos(complex<double> x) {
double cosh(double x);
double cos(double x);
double r = cosh(x.imag())*cos(x.real());
double i = sinh(x.imag())*sin(x.real());
return(complex<double>(r,i));
}
示例6: MPI_Barrier
complex<Float> Comms::GlobalSum(complex<Float> z)
{
if (!initialized) { Initialize(); }
#ifdef USE_MPI
Float sendbuf[2];
Float recvbuf[2];
sendbuf[0] = z.real();
sendbuf[1] = z.imag();
MPI_Barrier(MPI_COMM_WORLD);
#ifdef USE_SINGLE
MPI_Reduce( sendbuf, recvbuf, 2, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD );
#endif
#ifdef USE_DOUBLE
MPI_Reduce( sendbuf, recvbuf, 2, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD );
#endif
#ifdef USE_LONG_DOUBLE
MPI_Reduce( sendbuf, recvbuf, 2, MPI_LONG_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD );
#endif
return complex<Float>(recvbuf[0], recvbuf[1]);
#else
return z;
#endif
}
示例7: write_mandel
void write_mandel(std::string name, int x, int y)
{
GIF_image gif(x, y);
for(int i=0; i<256;i++)
{
gif.setColor(i, i, i, (char)255);
}
for (int i = 0; i < y; i++)
{
for (int j = 0; j < x; j++)
{
complex<double> c(c1.real()+j*(c2-c1).real()/X, c1.imag()+i*(c2-c1).imag()/Y);
complex<double> z = 0;
int iter = 0;
while (abs(z) < 2 && iter < MAX_ITER)
{
z = z*z+c;
iter++;
}
gif.setPixel(j, i, ((MAX_ITER-iter)*255)/40);
}
}
gif.writeToFile(name.c_str());
}
示例8:
complex operator- (const complex& c1, const complex& c2)
{
double res_re = c1.get_re() - c2.get_re();
double res_im = c1.get_im() - c2.get_im();
complex res{res_re, res_im};
return res;
}
示例9: pow
complex<Y>
pow(const complex<Y>& x,const Y& y)
{
std::complex<Y> tmp(x.real(),x.imag());
tmp = std::pow(tmp,y);
return complex<Y>(tmp.real(),tmp.imag());
}
示例10: value
static type value(const complex<quantity<Unit,Y> >& x)
{
const complex<value_type> tmp =
root<static_rational<N,D> >(complex<Y>(x.real().value(),
x.imag().value()));
return type(quantity_type::from_value(tmp.real()),
quantity_type::from_value(tmp.imag()));
}
示例11: complexAdd
complex<double> complexAdd(complex<double> x1, complex<double> x2)
{
int x1_real = int(x1.real());
int x2_real = int(x2.real());
int x1_imag = int(x1.imag());
int x2_imag = int(x2.imag());
int r1 = int(bitset<16>(x1_real+x2_real).to_ulong());
int r2 = int(bitset<16>(x1_imag+x2_imag).to_ulong());
return complex<double>(double(r1), double(r2));
}
示例12: switch
QTextStream& operator<<(QTextStream& ts, KCValue value)
{
ts << value.type();
switch (value.type()) {
case KCValue::Empty: break;
case KCValue::Boolean:
ts << ": ";
if (value.asBoolean()) ts << "TRUE";
else ts << "FALSE"; break;
case KCValue::Integer:
ts << ": " << value.asInteger(); break;
case KCValue::Float:
ts << ": " << (double) numToDouble(value.asFloat()); break;
case KCValue::Complex: {
const complex<KCNumber> complex(value.asComplex());
ts << ": " << (double) numToDouble(complex.real());
if (complex.imag() >= 0.0)
ts << '+';
ts << (double) numToDouble(complex.imag()) << 'i';
break;
}
case KCValue::String:
ts << ": " << value.asString(); break;
case KCValue::Array: {
ts << ": {" << value.asString();
const int cols = value.columns();
const int rows = value.rows();
for (int row = 0; row < rows; ++row) {
for (int col = 0; col < cols; ++col) {
ts << value.element(col, row);
if (col < cols - 1)
ts << ';';
}
if (row < rows - 1)
ts << '|';
}
ts << '}';
break;
}
case KCValue::Error:
ts << '(' << value.errorMessage() << ')'; break;
default: break;
}
return ts;
}
示例13: fmtvalue
std::string fmtvalue(std::true_type, const complex<T>& x)
{
std::string restr = as_string(fmt<'g', number_width, number_precision>(x.real()));
if (restr.size() > number_width)
restr = as_string(fmt<'g', number_width, number_precision_short>(x.real()));
std::string imstr = as_string(fmt<'g', -1, number_precision>(std::abs(x.imag())));
if (imstr.size() > number_width)
imstr = as_string(fmt<'g', -1, number_precision_short>(std::abs(x.imag())));
return restr + (x.imag() < T(0) ? "-" : "+") + padleft(number_width, imstr + "j");
}
示例14: complexdeflation
/* Complex root forward deflation.
*/
static int complexdeflation( const register int n, double a[], const complex<double> z )
{
register int i;
double r, u;
r = -2.0 * z.real();
u = z.real() * z.real() + z.imag() * z.imag();
a[ 1 ] -= r * a[ 0 ];
for( i = 2; i < n - 1; i++ )
a[ i ] = a[ i ] - r * a[ i - 1 ] - u * a[ i - 2 ];
return n - 2;
}
示例15: sum_to_all
complex<long double> sum_to_all(complex<long double> in) {
complex<long double> out = in;
#ifdef HAVE_MPI
if (MPI_LONG_DOUBLE == MPI_DATATYPE_NULL) {
complex<double> dout;
dout = sum_to_all(complex<double>(double(in.real()), double(in.imag())));
out = complex<long double>(dout.real(), dout.imag());
}
else
MPI_Allreduce(&in,&out,2,MPI_LONG_DOUBLE,MPI_SUM,mycomm);
#endif
return out;
}