本文整理汇总了C++中VideoCapture类的典型用法代码示例。如果您正苦于以下问题:C++ VideoCapture类的具体用法?C++ VideoCapture怎么用?C++ VideoCapture使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了VideoCapture类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: trainData
int trainData() {
std:: string videoName="";
int n_frames[1000];
//create dictionary
int dict_size=100;//***
Mat features;
for(int i=1; i<no_videos; i++) {
stringstream temp;
temp<<i;
std::string no=temp.str();
videoName="C:/Rasika/trainvideos/video_"+no+".avi"; //*** path can be changed
//initialize capture
VideoCapture cap;
cap.open(videoName);
if(!cap.isOpened()) // check if we succeeded
return -1;
double count = cap.get(CV_CAP_PROP_FRAME_COUNT); //get the frame count
//create window to show image
//namedWindow("Video",1);
//cout<<count<<endl;
int jump=count/N;
int j=1;
int u=0;
if(count<10) {
jump=1;
}
int cnt=jump;
while(u<10) {
//Create matrix to store video frame
Mat image;
cap.set(CV_CAP_PROP_POS_FRAMES,cnt); //Set index to jump for particular count
bool success = cap.read(image);
if (!success) {
cout << "Cannot read frame " << endl;
break;
}
///////////Convert to gray scale/////////////
Mat gray_image;
cvtColor( image, gray_image, CV_BGR2GRAY );
////////EXTRACT INTEREST POINTS USING SIFT////
// vector of keypoints
std::vector<cv::KeyPoint> keypoints;
// Construct the SIFT feature detector object
SiftFeatureDetector sif(0.03,10.); // threshold //***
//Detect interest points
sif.detect(gray_image,keypoints);
////////IMSHOW THE FRAMES EXTRACTED///////////
//copy video stream to image
//cap>>image;
//print image to screen
//imshow("Video",image);
///////////Save the frames//////////////
stringstream temp2;
temp2<<j;
std::string no2=temp2.str();
std::string frame_name="frame"+no2+".jpg";
imwrite(frame_name,image);
//////////////Draw the keypoints////////////
/*
Mat featureImage;
// Draw the keypoints with scale and orientation information
drawKeypoints(image, // original image
keypoints, // vector of keypoints
featureImage, // the resulting image
Scalar(255,0,255), // color of the points
DrawMatchesFlags::DRAW_RICH_KEYPOINTS); //flag
//std::string name="image"+i;
imshow(frame_name, featureImage );
*/
////////////////////detect decriptors//////////////////
SiftDescriptorExtractor siftExtractor;
Mat siftDesc;
siftExtractor.compute(gray_image,keypoints,siftDesc);
features.push_back(siftDesc);//add the descriptors from each frame..to create one for a video
////////////////
//delay 33ms //***
//waitKey(33);
//.........这里部分代码省略.........
示例2: doDetect
void doDetect (void)
{
Mat src, dst;
VideoCapture cap;
/// Load image
//src = imread( "pic.jpg", 1 );
//delay(WAITPHOTO);
if(!cap.open(0)) {
printf("kein Foto moeglich");
}
cap >> src;
if( !src.data )
{ }
/// Separate the image in 3 places ( B, G and R )
vector<Mat> bgr_planes;
split( src, bgr_planes );
/// Establish the number of bins
int histSize = 256;
/// Set the ranges ( for B,G,R) )
float range[] = { 0, 256 } ;
const float* histRange = { range };
bool uniform = true; bool accumulate = false;
Mat b_hist, g_hist, r_hist;
/// Compute the histograms:
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
// Draw the histograms for B, G and R
int hist_w = 512; int hist_h = 400;
int bin_w = cvRound( (double) hist_w/histSize );
Mat histImageR( hist_h, hist_w, CV_8UC3, Scalar( 0,0,0) );
Mat histImageB( hist_h, hist_w, CV_8UC3, Scalar( 0,0,0) );
Mat histImageG( hist_h, hist_w, CV_8UC3, Scalar( 0,0,0) );
/// Normalize the result to [ 0, histImage.rows ]
normalize(b_hist, b_hist, 0, histImageB.rows, NORM_MINMAX, -1, Mat() );
normalize(g_hist, g_hist, 0, histImageG.rows, NORM_MINMAX, -1, Mat() );
normalize(r_hist, r_hist, 0, histImageR.rows, NORM_MINMAX, -1, Mat() );
/// Draw for each channel
for( int i = 1; i < histSize; i++ )
{
line( histImageB, Point( bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
Scalar( 255, 0, 0), 2, 8, 0 );
line( histImageG, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
Scalar( 0, 255, 0), 2, 8, 0 );
line( histImageR, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
Scalar( 0, 0, 255), 2, 8, 0 );
}
imwrite("orginal.jpg",src);
imwrite( "PicR.jpg", histImageR );
imwrite("PicG.jpg", histImageG);
imwrite("PicB.jpg", histImageB);
float peakRed=0.0, peakGreen=0.0, peakBlue=0.0;
int positionRed=0, positionGreen=0, positionBlue=0;
bool blueXred = false;
bool fallBlue = false;
for (int j=0;j<255;j++) {
if(r_hist.at<float>(j) > peakRed) {
positionRed=j;
peakRed=r_hist.at<float>(j);
}
if(g_hist.at<float>(j) > peakGreen) {
positionGreen=j;
peakGreen=g_hist.at<float>(j);
}
if(b_hist.at<float>(j) > peakBlue) {
positionBlue=j;
peakBlue=b_hist.at<float>(j);
}
if(b_hist.at<float>(j)+5 < peakBlue) {
fallBlue = true;
}
if(b_hist.at<float>(j)-5 > peakBlue) {
fallBlue = false;;
}
if(b_hist.at<float>(j) - r_hist.at<float>(j) <5 && b_hist.at<float>(j) - r_hist.at<float>(j) >-5) {
if (fallBlue) {
blueXred = true;
}
//.........这里部分代码省略.........
示例3: main
int main(int argvc, char** argv){
VideoCapture video;
float media[] = {1,1,1,
1,1,1,
1,1,1};
float gauss[] = {1,2,1,
2,4,2,
1,2,1};
float horizontal[]={-1,0,1,
-2,0,2,
-1,0,1};
float vertical[]={-1,-2,-1,
0,0,0,
1,2,1};
float laplacian[]={0,-1,0,
-1,4,-1,
0,-1,0};
Mat cap, frame, frame32f, frameFiltered;
Mat mask(3,3,CV_32F), mask1;
Mat result, result1;
double width, height, min, max;
int absolut;
char key;
video.open(0);
if(!video.isOpened())
return -1;
width=video.get(CV_CAP_PROP_FRAME_WIDTH);
height=video.get(CV_CAP_PROP_FRAME_HEIGHT);
std::cout << "largura=" << width << "\n";;
std::cout << "altura =" << height<< "\n";;
namedWindow("filtroespacial",1);
mask = Mat(3, 3, CV_32F, media);
scaleAdd(mask, 1/9.0, Mat::zeros(3,3,CV_32F), mask1);
swap(mask, mask1);
absolut=1; // calcs abs of the image
menu();
for(;;){
video >> cap;
cvtColor(cap, frame, CV_BGR2GRAY);
flip(frame, frame, 1);
imshow("original", frame);
frame.convertTo(frame32f, CV_32F);
filter2D(frame32f, frameFiltered, frame32f.depth(), mask, Point(1,1), 0);
if(absolut){
frameFiltered=abs(frameFiltered);
}
frameFiltered.convertTo(result, CV_8U);
imshow("filtroespacial", result);
key = (char) waitKey(10);
if( key == 27 ) break; // esc pressed!
switch(key){
case 'a':
menu();
absolut=!absolut;
break;
case 'm':
menu();
mask = Mat(3, 3, CV_32F, media);
scaleAdd(mask, 1/9.0, Mat::zeros(3,3,CV_32F), mask1);
mask = mask1;
printmask(mask);
break;
case 'g':
menu();
mask = Mat(3, 3, CV_32F, gauss);
scaleAdd(mask, 1/16.0, Mat::zeros(3,3,CV_32F), mask1);
mask = mask1;
printmask(mask);
break;
case 'h':
menu();
mask = Mat(3, 3, CV_32F, horizontal);
printmask(mask);
break;
case 'v':
menu();
mask = Mat(3, 3, CV_32F, vertical);
printmask(mask);
break;
case 'l':
menu();
mask = Mat(3, 3, CV_32F, laplacian);
printmask(mask);
break;
case 'd':
menu();
mask = Mat(3, 3, CV_32F, gauss);
scaleAdd(mask, 1/16.0, Mat::zeros(3,3,CV_32F), mask1);
mask = mask1;
mask = Mat(3, 3, CV_32F, laplacian);
printmask(mask);
default:
break;
}
}
//.........这里部分代码省略.........
示例4: main
int main(int argc, char *argv[], char *window_name) {
if (argc != 5) {
cout << "Not enough parameters" << endl;
return -1;
}
stringstream conv;
VideoCapture capture;
capture.open(atoi(argv[1]));
const string compareImage1 = argv[2];
const string compareImage2 = argv[3];
const string compareImage3 = argv[4];
Mat image1 = imread(compareImage1, -1);
Mat image2 = imread(compareImage2, -1);
Mat image3 = imread(compareImage3, -1);
downsample(&image1);
downsample(&image2);
downsample(&image3);
displayImage("Image1", image1, 0);
displayImage("Image2", image2, 1);
displayImage("Image3", image3, 2);
//cv::cvtColor(image1, image1, CV_BGR2GRAY);
// cv::threshold(image1, image1, 128, 255, CV_THRESH_BINARY);
//vector<std::vector<cv::Point> > storage;
//Mat contoursImg1 = image1.clone();
//findContours(contoursImg1, storage, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
Mat frame;
Mat grayFrame;
capture >> frame;
int frameCounter = 0;
//KalmanFilter kalman = KalmanFilter(2, 2, 0);
///kalman.transitionMatrix
// =(Mat_<int>(2,2) << 1, 0, 1, 0);
//setIdentity(kalman.measurementMatrix);
//setIdentity(kalman.measurementNoiseCov, Scalar::all(1e-5));
//setIdentity(kalman.errorCovPost, Scalar::all(1));
KalmanFilter KF(4, 2, 0);
KF.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
// init...
setIdentity(KF.measurementMatrix);
setIdentity(KF.processNoiseCov, Scalar::all(1e-4));
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
setIdentity(KF.errorCovPost, Scalar::all(.1));
while (!frame.empty()) {
Mat prediction = KF.predict();
//prediction.at<int>(0,0);
cout << "Prediction: " << prediction << " ";
//process only grey frames:
cvtColor(frame, grayFrame, CV_RGB2GRAY);
//downsample(&grayFrame);
//nearest(image1, grayFrame);
vector<Point2f> image1Corners = nearest(image1, frame.clone());
vector<Point2f> image2Corners = nearest(image2, frame.clone());
vector<Point2f> image3Corners = nearest(image3, frame.clone());
Mat measurement =
(Mat_<float>(2,1) << (image1Corners[0].x + image1Corners[2].x)/2, (image1Corners[0].y + image1Corners[2].y)/2);
cout << measurement << endl;
if(measurement.at<float>(0,0) != 0){
KF.correct(measurement);
Point predictCentre(prediction.at<float>(0,0), prediction.at<float>(1,0));
cout << predictCentre;
cv::circle(frame,predictCentre,5,Scalar(255,255,255, 0),3,8,0);
}
if(shouldDraw((image1Corners[0].x + image1Corners[2].x)/2, (image1Corners[0].y + image1Corners[2].y)/2, prediction.at<float>(0,0),prediction.at<float>(1,0))){
drawCorners(&frame, image1Corners, 0);
}
drawCorners(&frame, image2Corners, 1);
drawCorners(&frame, image3Corners, 2);
//.........这里部分代码省略.........
示例5: main
int main(int argc,char **argv)
{
try
{
if (readArguments (argc,argv)==false) {
return 0;
}
//parse arguments
;
//read from camera or from file
if (TheInputVideo=="live") {
TheVideoCapturer.open(0);
waitTime=10;
}
else TheVideoCapturer.open(TheInputVideo);
//check video is open
if (!TheVideoCapturer.isOpened()) {
cerr<<"Could not open video"<<endl;
return -1;
}
//read first image to get the dimensions
TheVideoCapturer>>TheInputImage;
//read camera parameters if passed
if (TheIntrinsicFile!="") {
TheCameraParameters.readFromXMLFile(TheIntrinsicFile);
TheCameraParameters.resize(TheInputImage.size());
}
//Configure other parameters
if (ThePyrDownLevel>0)
MDetector.pyrDown(ThePyrDownLevel);
//Create gui
MDetector.getThresholdParams( ThresParam1,ThresParam2);
MDetector.setCornerRefinementMethod(MarkerDetector::LINES);
/*
cv::namedWindow("thres",1);
cv::namedWindow("in",1);
iThresParam1=ThresParam1;
iThresParam2=ThresParam2;
cv::createTrackbar("ThresParam1", "in",&iThresParam1, 13, cvTackBarEvents);
cv::createTrackbar("ThresParam2", "in",&iThresParam2, 13, cvTackBarEvents);
*/
char key=0;
int index=0;
//capture until press ESC or until the end of the video
while ( key!=27 && TheVideoCapturer.grab() ) // && index <= 50)
{
TheVideoCapturer.retrieve( TheInputImage);
//copy image
index++; //number of images captured
double tick = (double)getTickCount();//for checking the speed
//Detection of markers in the image passed
MDetector.detect(TheInputImage,TheMarkers,TheCameraParameters,TheMarkerSize);
//chekc the speed by calculating the mean speed of all iterations
AvrgTime.first+=((double)getTickCount()-tick)/getTickFrequency();
AvrgTime.second++;
//cout<<"Time detection="<<1000*AvrgTime.first/AvrgTime.second<<" milliseconds"<<endl;
//print marker info and draw the markers in image
TheInputImage.copyTo(TheInputImageCopy);
for (unsigned int i=0;i<TheMarkers.size();i++) {
if (AllMarkers.count( TheMarkers[i].id ) == 0)
AllMarkers[TheMarkers[i].id] = map<int,Marker>();
AllMarkers[TheMarkers[i].id][index] = TheMarkers[i];
cout<<index<<endl;
cout<<TheMarkers[i]<<endl;
TheMarkers[i].draw(TheInputImageCopy,Scalar(0,0,255),1);
}
//print other rectangles that contains no valid markers
/** for (unsigned int i=0;i<MDetector.getCandidates().size();i++) {
aruco::Marker m( MDetector.getCandidates()[i],999);
m.draw(TheInputImageCopy,cv::Scalar(255,0,0));
}*/
//draw a 3d cube in each marker if there is 3d info
if ( TheCameraParameters.isValid())
for (unsigned int i=0;i<TheMarkers.size();i++) {
CvDrawingUtils::draw3dCube(TheInputImageCopy,TheMarkers[i],TheCameraParameters);
CvDrawingUtils::draw3dAxis(TheInputImageCopy,TheMarkers[i],TheCameraParameters);
}
//DONE! Easy, right?
cout<<endl<<endl<<endl;
//show input with augmented information and the thresholded image
//cv::imshow("in",TheInputImageCopy);
//cv::imshow("thres",MDetector.getThresholdedImage());
//key=cv::waitKey(waitTime);//wait for key to be pressed
}
//.........这里部分代码省略.........
示例6: main
int main(int argc, char *argv[]) {
CommandLineParser parser(argc, argv, keys);
parser.about(about);
if(argc < 2) {
parser.printMessage();
return 0;
}
int dictionaryId = parser.get<int>("d");
bool showRejected = parser.has("r");
bool estimatePose = parser.has("c");
float markerLength = parser.get<float>("l");
Ptr<aruco::DetectorParameters> detectorParams = aruco::DetectorParameters::create();
if(parser.has("dp")) {
bool readOk = readDetectorParameters(parser.get<string>("dp"), detectorParams);
if(!readOk) {
cerr << "Invalid detector parameters file" << endl;
return 0;
}
}
detectorParams->doCornerRefinement = true; // do corner refinement in markers
int camId = parser.get<int>("ci");
String video;
if(parser.has("v")) {
video = parser.get<String>("v");
}
if(!parser.check()) {
parser.printErrors();
return 0;
}
Ptr<aruco::Dictionary> dictionary =
aruco::getPredefinedDictionary(aruco::PREDEFINED_DICTIONARY_NAME(dictionaryId));
Mat camMatrix, distCoeffs;
if(estimatePose) {
bool readOk = readCameraParameters(parser.get<string>("c"), camMatrix, distCoeffs);
if(!readOk) {
cerr << "Invalid camera file" << endl;
return 0;
}
}
VideoCapture inputVideo;
int waitTime;
if(!video.empty()) {
inputVideo.open(video);
waitTime = 0;
} else {
inputVideo.open(camId);
waitTime = 10;
}
double totalTime = 0;
int totalIterations = 0;
while(inputVideo.grab()) {
Mat image, imageCopy;
inputVideo.retrieve(image);
double tick = (double)getTickCount();
vector< int > ids;
vector< vector< Point2f > > corners, rejected;
vector< Vec3d > rvecs, tvecs;
// detect markers and estimate pose
aruco::detectMarkers(image, dictionary, corners, ids, detectorParams, rejected);
if(estimatePose && ids.size() > 0)
aruco::estimatePoseSingleMarkers(corners, markerLength, camMatrix, distCoeffs, rvecs,
tvecs);
double currentTime = ((double)getTickCount() - tick) / getTickFrequency();
totalTime += currentTime;
totalIterations++;
if(totalIterations % 30 == 0) {
cout << "Detection Time = " << currentTime * 1000 << " ms "
<< "(Mean = " << 1000 * totalTime / double(totalIterations) << " ms)" << endl;
}
// draw results
image.copyTo(imageCopy);
if(ids.size() > 0) {
aruco::drawDetectedMarkers(imageCopy, corners, ids);
if(estimatePose) {
for(unsigned int i = 0; i < ids.size(); i++)
{
aruco::drawAxis(imageCopy, camMatrix, distCoeffs, rvecs[i], tvecs[i],
markerLength * 0.5f);
cout << tvecs[i] << endl;
}
}
}
//.........这里部分代码省略.........
示例7: main
//.........这里部分代码省略.........
while(1)
{
imshow(winName, mat_canvas );
waitKey(30);
}
}
//-- use dataset
else if(flag_use_image == 2)
{
useDataset();
while(1)
{
imshow(winName, mat_canvas );
waitKey(30);
}
}
else // video input: tracking features
{
VideoCapture cap;
cap.open(1);
if(!cap.isOpened()) // check if we succeeded
return -1;
cap.set(CV_CAP_PROP_FRAME_WIDTH, 800);
cap.set(CV_CAP_PROP_FRAME_HEIGHT, 600);
namedWindow("Keypoints", WINDOW_NORMAL);
Mat mat_image;
int num_vecKeypoints;
int num_trackingPoints = 50;
Mat mat_descriptors;
char keyInput;
//-- Step 1: Detect the keypoints using Detector
// int minHessian = 400;
OrbFeatureDetector detector;
FREAK extractor;
while(1)
{
cap >> mat_image;
std::vector<KeyPoint> vec_keypoints, vec_goodKeypoints;
示例8: main
main(int argc, const char* argv[])
{
Mat frame, uiframe, grayFrame, result, skin, frame1, frame2, frame3,frame4, frame5;
VideoCapture capture;
int lowerBound = 200;
int upperBound = 255;
//Se inicia la camara
capture.open(0);
if( !capture.isOpened() )
{
std::cout << "no se encontro la camara" << std::endl;
return -1;
}
//Crea la ventana
cvNamedWindow("Result", CV_WINDOW_AUTOSIZE);
cvCreateTrackbar("Rango inferior", "Result", &lowerBound, 255 );
cvCreateTrackbar("Rango superior", "Result", &upperBound, 255 );
//Captura de la camara
while(1)
{
for(int i = 0; i < 5; i++ ) capture >> frame;
capture >> frame;
uiframe = frame.clone();
// Dibuja las barras inferiores y superiores
dibujarInterface(uiframe);
imshow("Result", uiframe );
cvWaitKey();
//Obtiene la mascara de la piel
skin = getSkin(frame);
//Convierte el frame a escala de grises
cvtColor(frame, grayFrame, CV_BGR2GRAY);
//Histogram Equalization
equalizeHist(grayFrame, frame1);
blur(frame1,frame2, Size(5,5));
//erociona y dilatacion
int size = 6;
Mat element = getStructuringElement(MORPH_CROSS, Size(2*size+1,2*size+1), Point(size,size) );
erode(frame2, frame3, element );
dilate(frame3, frame4, element );
inRange(frame4, Scalar(lowerBound), Scalar(upperBound), frame5);
applyMask(frame5, frame, result);
applyMask(skin, result, result, 255);
cvtColor( result , result, CV_BGR2GRAY);
//Para dibujar el rectangulo
Rect rect = EncontrarSonrisa( result );
rectangle( frame, rect , cvScalar(0,0,255));
// Dibuja las barras inferiores y superiores
dibujarInterface(frame);
//Muestra el frame
imshow("Result", frame);
cvWaitKey();
}
return 0;
}
示例9: main
int main(int argc, char* argv[])
{
//if we would like to calibrate our filter values, set to true.
bool calibrationMode = true;
//Matrix to store each frame of the webcam feed
Mat cameraFeed;
Mat threshold;
Mat filteredImage;
if(calibrationMode){
//create slider bars for HSV filtering
createTrackbars();
}
//video capture object to acquire webcam feed
VideoCapture capture;
//open capture object at location zero (default location for webcam)
capture.open(1);
//set height and width of capture frame
capture.set(CV_CAP_PROP_FRAME_WIDTH,FRAME_WIDTH);
capture.set(CV_CAP_PROP_FRAME_HEIGHT,FRAME_HEIGHT);
//start an infinite loop where webcam feed is copied to cameraFeed matrix
//all of our operations will be performed within this loop
while(1){
//store image to matrix
capture.read(cameraFeed);
// flip(cameraFeed,cameraFeed,1); //flip camera
filteredImage = cameraFeed.clone();
filteredImage = filterRed(filteredImage);
//convert frame from BGR to HSV colorspace
// cvtColor(cameraFeed,HSV,COLOR_BGR2HSV);
if(calibrationMode==true){
//if in calibration mode, we track objects based on the HSV slider values.
// cvtColor(cameraFeed,HSV,COLOR_BGR2HSV);
inRange(filteredImage,Scalar(254,254,254),Scalar(255,255,255),threshold);
morphOps(threshold);
imshow(windowName2,threshold);
trackFilteredObject(threshold,filteredImage,cameraFeed);
}
//show frames
imshow(windowName2,threshold);
imshow(windowName,cameraFeed);
imshow(windowName1,filteredImage);
//delay 30ms so that screen can refresh.
//image will not appear without this waitKey() command
waitKey(30);
}
return 0;
}
示例10: video_homography
int video_homography(int ac, char ** av)
{
if (ac != 2)
{
help(av);
return 1;
}
BriefDescriptorExtractor brief(32);
VideoCapture capture;
capture.open(atoi(av[1]));
if (!capture.isOpened())
{
help(av);
cout << "capture device " << atoi(av[1]) << " failed to open!" << endl;
return 1;
}
cout << "following keys do stuff:" << endl;
cout << "t : grabs a reference frame to match against" << endl;
cout << "l : makes the reference frame new every frame" << endl;
cout << "q or escape: quit" << endl;
Mat frame;
vector<DMatch> matches;
BFMatcher desc_matcher(NORM_HAMMING);
vector<Point2f> train_pts, query_pts;
vector<KeyPoint> train_kpts, query_kpts;
vector<unsigned char> match_mask;
Mat gray;
bool ref_live = true;
Mat train_desc, query_desc;
const int DESIRED_FTRS = 500;
GridAdaptedFeatureDetector detector(new FastFeatureDetector(10, true), DESIRED_FTRS, 4, 4);
Mat H_prev = Mat::eye(3, 3, CV_32FC1);
for (;;)
{
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, gray, COLOR_RGB2GRAY);
detector.detect(gray, query_kpts); //Find interest points
brief.compute(gray, query_kpts, query_desc); //Compute brief descriptors at each keypoint location
if (!train_kpts.empty())
{
vector<KeyPoint> test_kpts;
warpKeypoints(H_prev.inv(), query_kpts, test_kpts);
Mat mask = windowedMatchingMask(test_kpts, train_kpts, 25, 25);
desc_matcher.match(query_desc, train_desc, matches, mask);
drawKeypoints(frame, test_kpts, frame, Scalar(255, 0, 0), DrawMatchesFlags::DRAW_OVER_OUTIMG);
matches2points(train_kpts, query_kpts, matches, train_pts, query_pts);
if (matches.size() > 5)
{
Mat H = findHomography(train_pts, query_pts, RANSAC, 4, match_mask);
if (countNonZero(Mat(match_mask)) > 15)
{
H_prev = H;
}
else
resetH(H_prev);
drawMatchesRelative(train_kpts, query_kpts, matches, frame, match_mask);
}
else
resetH(H_prev);
}
else
{
H_prev = Mat::eye(3, 3, CV_32FC1);
Mat out;
drawKeypoints(gray, query_kpts, out);
frame = out;
}
imshow("frame", frame);
if (ref_live)
{
train_kpts = query_kpts;
query_desc.copyTo(train_desc);
}
char key = (char)waitKey(2);
switch (key)
//.........这里部分代码省略.........
示例11: main
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
parser.about("Use this script to run object detection deep learning networks using OpenCV.");
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
confThreshold = parser.get<float>("thr");
float scale = parser.get<float>("scale");
Scalar mean = parser.get<Scalar>("mean");
bool swapRB = parser.get<bool>("rgb");
int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height");
// Open file with classes names.
if (parser.has("classes"))
{
std::string file = parser.get<String>("classes");
std::ifstream ifs(file.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError, "File " + file + " not found");
std::string line;
while (std::getline(ifs, line))
{
classes.push_back(line);
}
}
// Load a model.
CV_Assert(parser.has("model"));
Net net = readNet(parser.get<String>("model"), parser.get<String>("config"), parser.get<String>("framework"));
net.setPreferableBackend(parser.get<int>("backend"));
net.setPreferableTarget(parser.get<int>("target"));
// Create a window
static const std::string kWinName = "Deep learning object detection in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
int initialConf = (int)(confThreshold * 100);
createTrackbar("Confidence threshold, %", kWinName, &initialConf, 99, callback);
// Open a video file or an image file or a camera stream.
VideoCapture cap;
if (parser.has("input"))
cap.open(parser.get<String>("input"));
else
cap.open(0);
// Process frames.
Mat frame, blob;
while (waitKey(1) < 0)
{
cap >> frame;
if (frame.empty())
{
waitKey();
break;
}
// Create a 4D blob from a frame.
Size inpSize(inpWidth > 0 ? inpWidth : frame.cols,
inpHeight > 0 ? inpHeight : frame.rows);
blobFromImage(frame, blob, scale, inpSize, mean, swapRB, false);
// Run a model.
net.setInput(blob);
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
{
resize(frame, frame, inpSize);
Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f);
net.setInput(imInfo, "im_info");
}
Mat out = net.forward();
postprocess(frame, out, net);
// Put efficiency information.
std::vector<double> layersTimes;
double freq = getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
std::string label = format("Inference time: %.2f ms", t);
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
imshow(kWinName, frame);
}
return 0;
}
示例12: main
int main(int argc, char ** argv){
VideoCapture cap;
if(argc > 1){
cout << argv[1] << endl;
cap.open(argv[1]);
}else{
cap.open(0);
cap.set(CV_CAP_PROP_FRAME_WIDTH, 640.);
cap.set(CV_CAP_PROP_FRAME_HEIGHT, 480.);
}
if(!cap.isOpened())
{
cerr << "Cant open video" << endl;
return EXIT_FAILURE;
}
Mat frame, gray, frame_prev, gray_prev;
cap >> frame;
// myloader loader("input_data.yaml",frame);
// loader.parseConfig();
w.fps = 0;
w.new_frame = true;
Mat h;
// bool enough = false;
int maxCorners = 300;
int minCorners = 45;
vector<Point2f> corners, corners_prev, corners_init;
vector<vector<Point2f>> correspondences(2, vector<Point2f>()); // init two vector of vectors :D
TermCriteria termcrit(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.03);
Size subPixWinSize(10,10), winSize(31,31);
// thread t1(Thread);
namedWindow(WIN1, WINDOW_NORMAL);
setMouseCallback(WIN1, CallBackFunc, NULL);
Mat out;
bool init = true, drawPoints = true;
Size boxSize = {200,200};
Rect box;
box += boxSize;
box += Point(1920/2, 1080/2);
while(!DispThreadDone)
{
cap >> frame;
if(frame.empty())
break;
cvtColor(frame, gray, CV_BGR2GRAY);
Mat gray_blend;
if(gray_prev.empty()){
frame.copyTo(gray_blend);
}
else{
frame.copyTo(gray_blend);
// addWeighted(gray, 0.5, gray_prev, 0.5,0.0, gray_blend);
}
if (gray_blend.type()==CV_8UC1) {
//input image is grayscale
cvtColor(gray_blend, out, CV_GRAY2RGB);
} else {
gray_blend.copyTo(out);
}
if(tracked_points.size() < 4){
while(tracked_points.size() != 4){
waitKey(10);
for(Point p : tracked_points){
circle(out, p, 2,Scalar(255,0,0));
}
imshow(WIN1, out);
}
// for(int i = 0; i < tracked_points.size(); i ++){
// tracked_points[i].y -= 300;
// }
}
if(init){
//.........这里部分代码省略.........
示例13: main
int main(int argc, char** argv) {
//Check arguments
//***
int set=trainData();
//If set=0, proceed
if(set==0) {
//Take the two video inputs and measure the similarity
float firstTF[1000];//***
float secondTF[1000];
int n_frames[1000];
//////////////////////////////////////////////////////////////////////////////////////////////////
Mat dicty;
FileStorage fs("full_dictionary.yml", FileStorage::READ);
fs["vocabulary"] >> dicty;
fs.release();
//set dictionary
int dict_size=100;//***
//create a nearest neighbor matcher
Ptr<DescriptorMatcher> matcher(new FlannBasedMatcher);
//create Sift feature point extracter
Ptr<FeatureDetector> detector(new SiftFeatureDetector());
//create Sift descriptor extractor
Ptr<DescriptorExtractor> extractor(new SiftDescriptorExtractor);
//create BoF (or BoW) descriptor extractor
BOWImgDescriptorExtractor bowDE(extractor,matcher);
//Set the dictionary with the vocabulary we created in the first step
bowDE.setVocabulary(dicty);
//////////////////////////////First Video//////////////////////////////////////////////////////////
ofstream myfile;
myfile.open ("first_video.txt");
myfile << "Calculating TF_VECTORS.\n";
//initialize capture
VideoCapture cap;
cap.open(argv[1]); //***
double count = cap.get(CV_CAP_PROP_FRAME_COUNT); //get the frame count
int jump=count/N; //extract 10 frames from the video ***
int j=0;
if(count<10) {
jump=1;
}
int cnt=jump;
myfile<<"Reading Video";
Mat features;
Mat desc;
int u=0;
while(u<10) {
//Create matrix to store video frame
Mat image;
cap.set(CV_CAP_PROP_POS_FRAMES,cnt); //Set index to jump for particular count
bool success = cap.read(image);
if (!success) {
cout << "Cannot read frame " << endl;
break;
}
///////////Convert to gray scale/////////////
Mat gray_image;
cvtColor( image, gray_image, CV_BGR2GRAY );
//To store the keypoints that will be extracted by SIFT
vector<KeyPoint> keypoints;
//Detect SIFT keypoints (or feature points)
detector->detect(gray_image,keypoints);
//To store the BoW (or BoF) representation of the image
Mat bowDescriptor;
//extract BoW (or BoF) descriptor from given image
bowDE.compute(gray_image,keypoints,bowDescriptor);
desc.push_back(bowDescriptor);
cnt+=jump;
j++;
u++;
///next frame for the same video
}
//FileStorage fs("descriptor.yml", FileStorage::WRITE);
//fs << "descriptor" << desc;
//fs.release();
for(int k=0; k<desc.cols; k++) {
int tf=0;
for(int l=0; l<desc.rows; l++) {
if(desc.at<float>(l,k)>0) {
//.........这里部分代码省略.........
示例14: idf_vector
void idf_vector(Mat full_dictionary) {
ofstream myfile;
myfile.open ("example.txt");
myfile << "Calculating IDF_VECTORS.\n";
std:: string videoName="";
int n_frames[100];
//create dictionary
int dict_size=100;//***
//create a nearest neighbor matcher
Ptr<DescriptorMatcher> matcher(new FlannBasedMatcher);
//create Sift feature point extracter
Ptr<FeatureDetector> detector(new SiftFeatureDetector());
//create Sift descriptor extractor
Ptr<DescriptorExtractor> extractor(new SiftDescriptorExtractor);
//create BoF (or BoW) descriptor extractor
BOWImgDescriptorExtractor bowDE(extractor,matcher);
//Set the dictionary with the vocabulary we created in the first step
bowDE.setVocabulary(full_dictionary);
for(int i=1; i<no_videos; i++) {
stringstream temp;
temp<<i;
std::string no=temp.str();
videoName="C:/Rasika/video_"+no+".avi"; //*** path can be changed
//initialize capture
VideoCapture cap;
cap.open(videoName);
double count = cap.get(CV_CAP_PROP_FRAME_COUNT); //get the frame count
int jump=count/N; //extract 10 frames from the video ***
int j=0;
int cnt=0;
myfile<<"Reading Video";
Mat features;
Mat desc;
while(cnt<count) {
//Create matrix to store video frame
Mat image;
cap.set(CV_CAP_PROP_POS_FRAMES,cnt); //Set index to jump for particular count
bool success = cap.read(image);
if (!success) {
cout << "Cannot read frame " << endl;
break;
}
///////////Convert to gray scale/////////////
Mat gray_image;
cvtColor( image, gray_image, CV_BGR2GRAY );
imagesData++;//Number of images in the database
//To store the keypoints that will be extracted by SIFT
vector<KeyPoint> keypoints;
//Detect SIFT keypoints (or feature points)
detector->detect(gray_image,keypoints);
//To store the BoW (or BoF) representation of the image
Mat bowDescriptor;
//extract BoW (or BoF) descriptor from given image
bowDE.compute(gray_image,keypoints,bowDescriptor);
desc.push_back(bowDescriptor);
////////////////
//delay 33ms //***
//waitKey(33);
cnt+=jump;
j++;
///next frame for the same video
}
/*myfile<<desc.rows<<endl;
myfile<<desc.cols<<endl;
int tf=0;
for(int i=0;i<desc.rows;i++){
for(int j=0;j<desc.cols;j++){
if(desc.at<float>(i,j)>0){
//cout<<bowDescriptor.at<float>(i,j)<<endl;
tf++;
}
}
}
myfile<<"Term Frequency:"<<tf<<"\n";
float idf=0;
float logcal=count/tf;
idf=log(logcal);
myfile<<"IDF:"<<idf<<"\n";
//.........这里部分代码省略.........
示例15: main
int main( int argc, char** argv )
{
Size boardSize, imageSize;
float squareSize = 1.f, aspectRatio = 1.f;
Mat cameraMatrix, distCoeffs;
const char* outputFilename = "out_camera_data.yml";
const char* inputFilename = 0;
int i, nframes = 10;
bool writeExtrinsics = false, writePoints = false;
bool undistortImage = false;
int flags = 0;
VideoCapture capture;
bool flipVertical = false;
bool showUndistorted = false;
bool videofile = false;
int delay = 1000;
clock_t prevTimestamp = 0;
int mode = DETECTION;
int cameraId = 0;
vector<vector<Point2f> > imagePoints;
vector<string> imageList;
Pattern pattern = CHESSBOARD;
if( argc < 2 )
{
help();
return 0;
}
for( i = 1; i < argc; i++ )
{
const char* s = argv[i];
if( strcmp( s, "-w" ) == 0 )
{
if( sscanf( argv[++i], "%u", (unsigned int*)&boardSize.width ) != 1 || boardSize.width <= 0 )
return fprintf( stderr, "Invalid board width\n" ), -1;
}
else if( strcmp( s, "-h" ) == 0 )
{
if( sscanf( argv[++i], "%u", (unsigned int*)&boardSize.height ) != 1 || boardSize.height <= 0 )
return fprintf( stderr, "Invalid board height\n" ), -1;
}
else if( strcmp( s, "-pt" ) == 0 )
{
i++;
if( !strcmp( argv[i], "circles" ) )
pattern = CIRCLES_GRID;
else if( !strcmp( argv[i], "acircles" ) )
pattern = ASYMMETRIC_CIRCLES_GRID;
else if( !strcmp( argv[i], "chessboard" ) )
pattern = CHESSBOARD;
else
return fprintf( stderr, "Invalid pattern type: must be chessboard or circles\n" ), -1;
}
else if( strcmp( s, "-s" ) == 0 )
{
if( sscanf( argv[++i], "%f", &squareSize ) != 1 || squareSize <= 0 )
return fprintf( stderr, "Invalid board square width\n" ), -1;
}
else if( strcmp( s, "-n" ) == 0 )
{
if( sscanf( argv[++i], "%u", (unsigned int*)&nframes ) != 1 || nframes <= 3 )
return printf("Invalid number of images\n" ), -1;
}
else if( strcmp( s, "-a" ) == 0 )
{
if( sscanf( argv[++i], "%f", &aspectRatio ) != 1 || aspectRatio <= 0 )
return printf("Invalid aspect ratio\n" ), -1;
flags |= CV_CALIB_FIX_ASPECT_RATIO;
}
else if( strcmp( s, "-d" ) == 0 )
{
if( sscanf( argv[++i], "%u", (unsigned int*)&delay ) != 1 || delay <= 0 )
return printf("Invalid delay\n" ), -1;
}
else if( strcmp( s, "-op" ) == 0 )
{
writePoints = true;
}
else if( strcmp( s, "-oe" ) == 0 )
{
writeExtrinsics = true;
}
else if( strcmp( s, "-zt" ) == 0 )
{
flags |= CV_CALIB_ZERO_TANGENT_DIST;
}
else if( strcmp( s, "-p" ) == 0 )
{
flags |= CV_CALIB_FIX_PRINCIPAL_POINT;
}
else if( strcmp( s, "-v" ) == 0 )
{
flipVertical = true;
}
else if( strcmp( s, "-V" ) == 0 )
{
videofile = true;
}
//.........这里部分代码省略.........