本文整理汇总了C++中VP::push_back方法的典型用法代码示例。如果您正苦于以下问题:C++ VP::push_back方法的具体用法?C++ VP::push_back怎么用?C++ VP::push_back使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类VP
的用法示例。
在下文中一共展示了VP::push_back方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main(int argc, char *argv[]) {
Point p;
int hi;
while(4 == scanf("%d%d%d%d",&N,&M,&S,&V)) {
for(int i = 0; i < N; ++i) edges[i].clear();
v_left = VI(N + 1, -1);
v_right = VI(M + 1, -1);
gophers.clear();
holes.clear();
hi = (V*S)*(V*S);
for(int i = 0; i < N; ++i) {
scanf("%lf%lf",&p.first,&p.second);
gophers.push_back(p);
}
for(int i = 0; i < M; ++i) {
scanf("%lf%lf",&p.first,&p.second);
holes.push_back(p);
}
for(int i = 0; i < N; ++i) {
for(int j = 0; j < M; ++j) {
if(dist(gophers[i],holes[j]) < hi)
edges[i].push_back(j);
}
}
printf("%d\n",match());
}
return 0;
}
示例2: solve
VP solve(vector<Line> line) {
sort(line.begin(), line.end(), cmp());
int n = unique(line.begin(), line.end(), kequal) - line.begin();
assert(n > 2);
int head = 0, tail = 1;
que[0] = line[0]; que[1] = line[1];
VP ret;
for (int i = 2; i < n; i++) {
if (fabs((que[tail].e - que[tail].s).det(que[tail - 1].e - que[tail - 1].s)) < eps ||
fabs((que[head].e - que[head].s).det(que[head + 1].e - que[head + 1].s)) < eps) {
return ret;
}
while (head < tail && ((isLL(que[tail], que[tail - 1])[0] - line[i].s)
.det(line[i].e - line[i].s)) > eps) tail--;
while (head < tail && ((isLL(que[head], que[head + 1])[0] - line[i].s)
.det(line[i].e - line[i].s)) > eps) head++;
que[++tail] = line[i];
}
while (head < tail && ((isLL(que[tail], que[tail - 1])[0] - que[head].s)
.det(que[head].e - que[head].s)) > eps) tail--;
while (head < tail && ((isLL(que[head], que[head + 1])[0] - que[tail].s)
.det(que[tail].e - que[tail].s)) > eps) head++;
if (tail <= head + 1)
return ret;
for (int i = head; i < tail; i++) {
ret.push_back(isLL(que[i], que[i + 1])[0]);
}
if (head < tail + 1)
ret.push_back(isLL(que[head], que[tail])[0]);
return ret;
}
示例3: ConvexCut
VP ConvexCut(const VP &ps, L l) {
VP Q;
for (int i = 0; i < (int)ps.size(); i++) {
P A = ps[i], B = ps[(i+1)%ps.size()];
if (ccw(l.a, l.b, A) != -1) Q.push_back(A);
if (ccw(l.a, l.b, A) * ccw(l.a, l.b, B) < 0)
Q.push_back(is_ll((L){A, B}, l));
}
return Q;
}
示例4: split_route
void split_route(vector<Segment> &vs,VR &nodes,int idx, int n1, int n2){
ParamEdge e=vs[idx].edge;
debugline(e.from(),e.to(),255,0,0,true);
double minp=DBL_MAX;
int minidx=-1;
for (int j=0,n=nodes.size();j<n;j++){
if (j==n1 || j==n2) continue;
if (e.cross(nodes[j])){
if (nodes[j].contains(e.from())) continue;
if (nodes[j].contains(e.to())) continue;
double p=e.cross_param_smallest(nodes[j]);
if (p<minp){
minp=p;
minidx=j;
}
}
}
if (minidx<0) return ;
Point dc=e.dist_vec(nodes[minidx].center());
if (dc.is_null()){
dc=to_left(e.unit(),PI/2); // minidxust choose a side
}
VP pts;
Point r=e.dist_vec(nodes[minidx].TL());
if (scalar(r,dc)<0) pts.push_back(nodes[minidx].TL());
r=e.dist_vec(nodes[minidx].TR());
if (scalar(r,dc)<0) pts.push_back(nodes[minidx].TR());
r=e.dist_vec(nodes[minidx].BL());
if (scalar(r,dc)<0) pts.push_back(nodes[minidx].BL());
r=e.dist_vec(nodes[minidx].BR());
if (scalar(r,dc)<0) pts.push_back(nodes[minidx].BR());
if (pts.size()==0) {
printf("Ups, no points on smaller side of edge/node cut area");
return;
}
if (pts.size()>2 ) throw "expected 1 or 2 points";
vector<Segment> vsnew;
int idxlast=idx+1;
if (pts.size()==1){
vsnew.push_back(Segment(ParamEdge(e.from(),pts[0]),vs[idx].first,false));
vsnew.push_back(Segment(ParamEdge(pts[0],e.to()),false,vs[idx].last));
} else if (pts.size()==2) {
if (norm(pts[0]-e.from())>norm(pts[1]-e.from())){ // do nearest point first
swap(pts[0],pts[1]);
}
vsnew.push_back(Segment(ParamEdge(e.from(),pts[0]),vs[idx].first,false));
vsnew.push_back(Segment(ParamEdge(pts[0],pts[1]),false,false));
vsnew.push_back(Segment(ParamEdge(pts[1],e.to()),false,vs[idx].last));
idxlast++;
}
vs.erase(vs.begin()+idx);
vs.insert(vs.begin()+idx,vsnew.begin(),vsnew.end());
split_route(vs,nodes,idxlast,minidx,n2);
split_route(vs,nodes,idx,n1,minidx); // new overlaps could be introduced after makeing a kink into the line
}
示例5: cut_convex
void cut_convex(VP& a, Point p1, Point p2) {
VP b;
repn(i, sz(a)) {
Point a1 = a[i], a2 = a[(i + 1) % a.size()];
double m1 = mult(p1, p2, a1);
double m2 = mult(p1, p2, a2);
if(sgn(m1) * sgn(m2) < 0) {
Point tmp;
tmp.x = (a1.x * m2 - a2.x * m1) / (m2 - m1);
tmp.y = (a1.y * m2 - a2.y * m1) / (m2 - m1);
b.push_back(tmp);
}
if(sgn(m2) >= 0) b.push_back(a2);
}
示例6: isLL
VP isLL(CP p1, CP p2, CP q1, CP q2){
//二直线交点,无则返回空vector
//返回空时有共线与相离的区别,用(p2 - p1).det(q1 - p1) == 0判断
VP ret;
T d = (q2 - q1).det(p2 - p1);
if (fabs(d) < eps) return ret;
ret.push_back(p1 + (p2 - p1) * ((q2 - q1).det(q1 - p1) / d));
return ret;
}
示例7: isCL
VP isCL(CP c, double r, CP p1, CP p2) {
//返回值按到p1的距离从小到大排列
double x = (p1 - c).dot(p2 - p1);
double y = (p2 - p1).abs2();
double d = x * x - y * ((p1 - c).abs2() - r * r);
if (d < -eps) return VP(0);
if (d < 0) d = 0;
Point q1 = p1 - (p2 - p1) * (x / y);
Point q2 = (p2 - p1) * (sqrt(d) / y);
VP ret;
ret.push_back(q1 - q2);
ret.push_back(q1 + q2);
return ret;
}
示例8: calcPos
int calcPos(VI &data,VVI &g,int node)
{
int ret=-1;
VI wc(n , 0);
VI pos(n , -1);
int curNode = data[n-1];
for(int i = sz(data)-2 ; i>=0 ; i--)
{
if(g[curNode][data[i]])
{
wc[curNode]++;
}
else
{
wc[data[i]]++;
curNode = data[i];
}
}
for(int i = 0 ; i<n ; i++)
cout<<i <<" wc "<<wc[i]<<endl;
pos[curNode] = 1;
VP slist;
int idx = 2;
for(int i = 0 ; i<n ; i++)
{
if(i==curNode) continue;
slist.push_back({ wc[i] , i });
}
sort(slist.begin() , slist.end());
for(int i = sz(slist)-1 ; i>=0 ; i--)
{
if(i==(sz(slist)-1) || (slist[i].x!=slist[i+1].x))
pos[slist[i].y] = idx++;
else pos[slist[i].y] = pos[slist[i+1].y];
}
for(int i = 0 ; i<n ; i++)
{
cout<<i<<" pos "<<pos[i]<<endl;
}
return pos[node];
}
示例9: main
int main()
{
int tcase,cas=1;
cin>>tcase;
while(tcase--)
{
cin>>n;
VVI g(n , VI(n , 0));
for(auto &x: g)
for(auto &y: x)
cin>> y;
VP slist;
for(int i = 0 ; i<n ; i++)
{
int cnt = 0;
for(int j =0 ; j<n ; j++)
cnt+= g[i][j];
slist.push_back({cnt , i});
}
sort(slist.begin() , slist.end());
VP sol;
for(int i = 0 ; i<n ; i++)
{
int mx = posMax(g , slist , i);
int mn = posMin(g , slist , i);
cout<<i<<" "<<mx<<" "<<mn<<endl;
}
}
return 0;
}
示例10: main
int main(){
srand(time(NULL)); //没有这个每次的运行结果将相同
int N,T,S;
double pc,pm;
printf("注意: 此系统数据都是随机生成的,所以每次运行的城市坐标可能不同,结果也可能不同!!\n\n");
printf("请输入TSP问题城市数目,GA算法迭代次数,种群大小,交叉概率,变异概率\n");
while(cin>>N>>T>>S>>pc>>pm){
clock_t Time=clock();
city.clear();
printf("城市坐标如下:\n");
for(int i=0;i<N;i++){ //坐标随机生成
double a=rand()%5000, b=rand()%5000;
city.push_back(Point(a,b));
printf("(%5.0lf,%5.0lf)\n",a,b);
}
double mi=1000000000.0; //记录最小距离和
Population p(N,S,pc,pm); //产生种群
for(int i=0;i<T;i++){ //迭代T次
p.getNext();
mi=min(mi,p.getBest().dis); //更新最小距离和
}
permut=p.getBest().v; //终止状态种群的最佳个体
printf("路径为: ");
for(int i=0;i<permut.size();i++){
if( i!=0 ) printf("-->");
printf("%d",permut[i]);
if( i==permut.size()-1 ) puts("");
}
printf("计算中出现过的最小距离和为: %.1lf 最终距离和为: %.1lf\n",mi,p.getBest().dis);
printf("计算耗时: %.3lf 秒\n",(clock()-Time)/1000.0);
OpenGLInit();
glutDisplayFunc(draw);
glutMainLoop();
}
}