本文整理汇总了C++中UnitigVector::size方法的典型用法代码示例。如果您正苦于以下问题:C++ UnitigVector::size方法的具体用法?C++ UnitigVector::size怎么用?C++ UnitigVector::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类UnitigVector
的用法示例。
在下文中一共展示了UnitigVector::size方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: writeLog
void
breakSingletonTigs(UnitigVector &unitigs) {
// For any singleton unitig, eject the read and delete the unitig. Eventually,
// we will stop making singleton unitigs.
uint32 removed = 0;
for (uint32 ti=1; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
if (utg == NULL)
continue;
if (utg->ufpath.size() > 1)
continue;
unitigs[ti] = NULL; // Remove the unitig from the list
utg->removeFrag(utg->ufpath[0].ident); // Eject the read
delete utg; // Reclaim space
removed++; // Count
}
writeLog("Removed %u read%s from %u singleton unitig%s.\n",
removed, (removed != 1) ? "" : "s",
removed, (removed != 1) ? "" : "s");
}
示例2: while
void
placeContainsUsingBestOverlaps(UnitigVector &unitigs) {
uint32 fragsPlaced = 1;
uint32 fragsPending = 0;
logFileFlags &= ~LOG_PLACE_FRAG;
while (fragsPlaced > 0) {
fragsPlaced = 0;
fragsPending = 0;
writeLog("==> PLACING CONTAINED FRAGMENTS\n");
for (uint32 fid=1; fid<FI->numFragments()+1; fid++) {
BestContainment *bestcont = OG->getBestContainer(fid);
Unitig *utg;
if (bestcont->isContained == false)
// Not a contained fragment.
continue;
if (Unitig::fragIn(fid) != 0)
// Containee already placed.
continue;
if (Unitig::fragIn(bestcont->container) == 0) {
// Container not placed (yet).
fragsPending++;
continue;
}
utg = unitigs[Unitig::fragIn(bestcont->container)];
utg->addContainedFrag(fid, bestcont, logFileFlagSet(LOG_INITIAL_CONTAINED_PLACEMENT));
if (utg->id() != Unitig::fragIn(fid))
writeLog("placeContainsUsingBestOverlaps()-- FAILED to add frag %d to unitig %d.\n", fid, bestcont->container);
assert(utg->id() == Unitig::fragIn(fid));
fragsPlaced++;
}
writeLog("==> PLACING CONTAINED FRAGMENTS - placed %d fragments; still need to place %d\n",
fragsPlaced, fragsPending);
if ((fragsPlaced == 0) && (fragsPending > 0)) {
writeLog("Stopping contained fragment placement due to zombies.\n");
fragsPlaced = 0;
fragsPending = 0;
}
}
for (uint32 ti=1; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
if (utg)
utg->sort();
}
}
示例3: writeLog
void
joinUnitigs(UnitigVector &unitigs, bool enableJoining) {
if (enableJoining == false)
return;
writeLog("==> JOINING SPLIT UNITIGS\n");
// Sort unitigs by joined size. Sort. Join the largest first.
vector<joinEntry> joins;
// Over all unitigs, evaluate if a unitig is a candidate for merging onto something.
for (uint32 frID=0; frID<unitigs.size(); frID++) {
Unitig *fr = unitigs[frID];
if (fr == NULL)
// Ain't no unitig here, mister!
continue;
if (fr->ufpath.size() < 2)
// Ain't no real unitig here, mister!
continue;
// Do we look like a bubble?
if (joinUnitigs_looksLikeBubble(fr))
continue;
// The for loop tries reads close to the end - but we don't support joining these.
for (uint32 ii=0; (ii < 1) && (ii < fr->ufpath.size()); ii++)
if (joinUnitigs_examineEnd(unitigs, fr, ii, true, joins))
break;
for (uint32 ii=0; (ii < 1) && (ii < fr->ufpath.size()); ii++)
if (joinUnitigs_examineEnd(unitigs, fr, ii, false, joins))
break;
} // Over all unitigs.
writeLog("Found %d pairs of unitigs to join.\n", (int)joins.size());
std::sort(joins.begin(), joins.end(), greater<joinEntry>());
return;
for (uint32 j=0; j<joins.size(); j++) {
joinEntry *join = &joins[j];
//joinUnitigs_append(unitigs, join);
}
}
示例4: fprintf
void
checkUnitigMembership(UnitigVector &unitigs) {
uint32 *inUnitig = new uint32 [FI->numFragments()+1];
uint32 noUnitig = 0xffffffff;
// All reads start of not placed in a unitig.
for (uint32 i=0; i<FI->numFragments()+1; i++)
inUnitig[i] = noUnitig;
// Over all unitigs, remember where each read is.
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *tig = unitigs[ti];
int32 len = 0;
if (tig == NULL)
continue;
for (uint32 fi=0; fi<tig->ufpath.size(); fi++) {
ufNode *frg = &tig->ufpath[fi];
if (frg->ident > FI->numFragments())
fprintf(stderr, "tig %u ufpath[%d] ident %u more than number of reads %u\n",
tig->id(), fi, frg->ident, FI->numFragments());
if (inUnitig[frg->ident] != noUnitig)
fprintf(stderr, "tig %u ufpath[%d] ident %u placed multiple times\n",
tig->id(), fi, frg->ident);
assert(frg->ident <= FI->numFragments()); // Can't be out of range.
assert(inUnitig[frg->ident] == noUnitig); // Read must be not placed yet.
inUnitig[frg->ident] = ti;
}
}
// Find any read not placed in a unitig.
for (uint32 i=0; i<FI->numFragments()+1; i++) {
if (FI->fragmentLength(i) == 0) // Deleted read.
continue;
assert(inUnitig[i] != 0); // There shouldn't be a unitig 0.
assert(inUnitig[i] != noUnitig); // The read should be in a unitig.
}
delete [] inUnitig;
}
示例5: if
void
reportUnitigs(UnitigVector &unitigs, const char *prefix, const char *name) {
if (logFileFlagSet(LOG_INTERMEDIATE_UNITIGS) == 0)
return;
uint32 numFragsT = 0;
uint32 numFragsP = 0;
uint64 utgLen = 0;
// Compute average frags per partition.
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
if (utg == NULL)
continue;
numFragsT += utg->ufpath.size();
if (utg->ufpath.size() > 2)
utgLen += utg->getLength();
}
if (utgLen < 16 * 1024 * 1024)
numFragsP = numFragsT / 7;
else if (utgLen < 64 * 1024 * 1024)
numFragsP = numFragsT / 63;
else
numFragsP = numFragsT / 127;
char tigStorePath[FILENAME_MAX];
sprintf(tigStorePath, "%s.%03u.%s.tigStore", prefix, logFileOrder, name);
// Failing to do this results in consensus running about 40 times slower. Three hours instead of
// five minutes.
setParentAndHang(unitigs);
writeUnitigsToStore(unitigs, tigStorePath, tigStorePath, numFragsP, false);
}
示例6: sprintf
// For every unitig, report the best overlaps contained in the
// unitig, and all overlaps contained in the unitig.
//
// Wow, this is ancient.
//
void
writeOverlapsUsed(UnitigVector &unitigs,
char *fileprefix) {
char filename[FILENAME_MAX] = {0};
#if 0
GenericMesg pmesg;
OverlapMesg omesg;
#endif
sprintf(filename, "%s.unused.ovl", fileprefix);
FILE *file = fopen(filename, "w");
assert(file != NULL);
#if 0
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
if (utg == NULL)
continue;
for (uint32 fi=0; fi<utg->ufpath.size(); fi++) {
ufNode *frg = &utg->ufpath[fi];
// Where is our best overlap? Contained or dovetail?
BestEdgeOverlap *bestedge5 = OG->getBestEdgeOverlap(frg->ident, false);
BestEdgeOverlap *bestedge3 = OG->getBestEdgeOverlap(frg->ident, true);
int bestident5 = 0;
int bestident3 = 0;
if (bestedge5) {
bestident5 = bestedge5->fragId();
if ((bestident5 > 0) && (utg->fragIn(bestident5) != utg->id())) {
omesg.aifrag = frg->ident;
omesg.bifrag = bestident5;
omesg.ahg = bestedge5->ahang();
omesg.bhg = bestedge5->bhang();
omesg.orientation.setIsUnknown();
omesg.overlap_type = AS_DOVETAIL;
omesg.quality = 0.0;
omesg.min_offset = 0;
omesg.max_offset = 0;
omesg.polymorph_ct = 0;
omesg.alignment_trace = NULL;
#ifdef AS_MSG_USE_OVL_DELTA
omesg.alignment_delta = NULL;
#endif
// This overlap is off of the 5' end of this fragment.
if (bestedge5->frag3p() == false)
omesg.orientation.setIsOuttie();
if (bestedge5->frag3p() == true)
omesg.orientation.setIsAnti();
pmesg.t = MESG_OVL;
pmesg.m = &omesg;
WriteProtoMesg_AS(file, &pmesg);
}
}
if (bestedge3) {
bestident3 = bestedge3->fragId();
if ((bestident3 > 0) && (utg->fragIn(bestident3) != utg->id())) {
omesg.aifrag = frg->ident;
omesg.bifrag = bestident3;
omesg.ahg = bestedge3->ahang();
omesg.bhg = bestedge3->bhang();
omesg.orientation.setIsUnknown();
omesg.overlap_type = AS_DOVETAIL;
omesg.quality = 0.0;
omesg.min_offset = 0;
omesg.max_offset = 0;
omesg.polymorph_ct = 0;
omesg.alignment_trace = NULL;
#ifdef AS_MSG_USE_OVL_DELTA
omesg.alignment_delta = NULL;
#endif
// This overlap is off of the 3' end of this fragment.
if (bestedge3->frag3p() == false)
omesg.orientation.setIsNormal();
if (bestedge3->frag3p() == true)
omesg.orientation.setIsInnie();
pmesg.t = MESG_OVL;
pmesg.m = &omesg;
WriteProtoMesg_AS(file, &pmesg);
}
}
}
//.........这里部分代码省略.........
示例7: splitDiscontinuousUnitigs
// After splitting and ejecting some contains, check for discontinuous unitigs.
//
void splitDiscontinuousUnitigs(UnitigVector &unitigs, uint32 minOverlap) {
writeLog("==> SPLIT DISCONTINUOUS\n");
uint32 numTested = 0;
uint32 numSplit = 0;
uint32 numCreated = 0;
uint32 splitFragsLen = 0;
uint32 splitFragsMax = 0;
ufNode *splitFrags = NULL;
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *tig = unitigs[ti];
if ((tig == NULL) || (tig->ufpath.size() < 2))
continue;
// Unitig must be sorted. Someone upstream os screwing this up.
tig->sort();
// We'll want to build an array of new fragments to split out. This can be up
// to the size of the largest unitig.
splitFragsMax = MAX(splitFragsMax, tig->ufpath.size());
// Check that the unitig starts at position zero. Not critical for the next loop, but
// needs to be dome sometime.
int32 minPos = MIN(tig->ufpath[0].position.bgn, tig->ufpath[0].position.end);
if (minPos == 0)
continue;
writeLog("splitDiscontinuous()-- tig "F_U32" offset messed up; reset by "F_S32".\n", tig->id(), minPos);
for (uint32 fi=0; fi<tig->ufpath.size(); fi++) {
ufNode *frg = &tig->ufpath[fi];
frg->position.bgn -= minPos;
frg->position.end -= minPos;
}
}
splitFrags = new ufNode [splitFragsMax];
// Now, finally, we can check for gaps in unitigs.
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *tig = unitigs[ti];
if ((tig == NULL) || (tig->ufpath.size() < 2))
continue;
// We don't expect many unitigs to be broken, so we'll do a first quick pass to just
// test if it is.
int32 maxEnd = MAX(tig->ufpath[0].position.bgn, tig->ufpath[0].position.end);
bool isBroken = false;
for (uint32 fi=0; fi<tig->ufpath.size(); fi++) {
ufNode *frg = &tig->ufpath[fi];
int32 bgn = MIN(frg->position.bgn, frg->position.end);
int32 end = MAX(frg->position.bgn, frg->position.end);
if (bgn > maxEnd - minOverlap) {
isBroken = true;
break;
}
maxEnd = MAX(maxEnd, end);
}
numTested++;
if (isBroken == false)
continue;
numSplit++;
// Dang, busted unitig. Fix it up.
splitFragsLen = 0;
maxEnd = 0;
if (logFileFlagSet(LOG_MATE_SPLIT_DISCONTINUOUS))
writeLog("splitDiscontinuous()-- discontinuous tig "F_U32" with "F_SIZE_T" fragments broken into:\n",
tig->id(), tig->ufpath.size());
for (uint32 fi=0; fi<tig->ufpath.size(); fi++) {
ufNode *frg = &tig->ufpath[fi];
int32 bgn = MIN(frg->position.bgn, frg->position.end);
int32 end = MAX(frg->position.bgn, frg->position.end);
// Good thick overlap exists to this fragment, save it.
if (bgn <= maxEnd - minOverlap) {
assert(splitFragsLen < splitFragsMax);
splitFrags[splitFragsLen++] = *frg;
//.........这里部分代码省略.........
示例8: accumulateLibraryStats
InsertSizes::InsertSizes(UnitigVector &unitigs) {
_numLibs = FI->numLibraries();
_dist = new int32 * [_numLibs + 1];
_distLen = new int32 [_numLibs + 1];
_distMax = new int32 [_numLibs + 1];
_mean = new int32 [_numLibs + 1];
_stddev = new int32 [_numLibs + 1];
_samples = new int32 [_numLibs + 1];
_distLen[0] = 0;
_distMax[0] = 0;
_dist[0] = NULL;
for (uint32 i=1; i<_numLibs + 1; i++) {
_distLen[i] = 0;
_distMax[i] = 1048576;
_dist[i] = new int32 [_distMax[i]];
_mean[i] = (int32)FI->mean(i);
_stddev[i] = (int32)FI->stddev(i);
_samples[i] = FI->numMatesInLib(i);
}
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
if ((utg == NULL) ||
(utg->ufpath.size() < 2))
continue;
accumulateLibraryStats(utg);
}
for (uint32 i=1; i<_numLibs + 1; i++)
sort(_dist[i], _dist[i] + _distLen[i]);
// Disregard outliers (those outside 5 (estimated) stddevs) and recompute global stddev
for (uint32 i=1; i<_numLibs + 1; i++) {
int32 median = _dist[i][_distLen[i] * 1 / 2];
int32 oneThird = _dist[i][_distLen[i] * 1 / 3];
int32 twoThird = _dist[i][_distLen[i] * 2 / 3];
int32 aproxStd = MAX(median - oneThird, twoThird - median);
int32 biggest = median + aproxStd * 5;
int32 smallest = median - aproxStd * 5;
uint32 numPairs = 0;
double sum_Dists = 0.0;
double sumSquares = 0.0;
for (int32 d=0; d<_distLen[i]; d++)
if ((smallest <= _dist[i][d]) &&
(_dist[i][d] <= biggest)) {
numPairs++;
sum_Dists += _dist[i][d];
}
_samples[i] = numPairs;
_mean[i] = (numPairs > 0) ? sum_Dists / numPairs : 0;
for (int32 d=0; d<_distLen[i]; d++)
if ((smallest <= _dist[i][d]) &&
(_dist[i][d] <= biggest))
sumSquares += ((double)(_dist[i][d] - _mean[i]) *
(double)(_dist[i][d] - _mean[i]));
_stddev[i] = (numPairs > 1) ? sqrt(sumSquares / (numPairs - 1)) : 0.0;
writeLog("InsertSizes()-- lib %d mean %d stddev %d samples %d\n", i, _mean[i], _stddev[i], _samples[i]);
}
for (uint32 i=0; i<_numLibs + 1; i++)
delete [] _dist[i];
delete [] _dist; _dist = NULL;
delete [] _distLen; _distLen = NULL;
delete [] _distMax; _distMax = NULL;
}
示例9: memset
void
placeUnplacedUsingAllOverlaps(UnitigVector &unitigs,
const char *prefix) {
uint32 fiLimit = FI->numFragments();
uint32 numThreads = omp_get_max_threads();
uint32 blockSize = (fiLimit < 100 * numThreads) ? numThreads : fiLimit / 99;
uint32 *placedTig = new uint32 [FI->numFragments() + 1];
SeqInterval *placedPos = new SeqInterval [FI->numFragments() + 1];
memset(placedTig, 0, sizeof(uint32) * (FI->numFragments() + 1));
memset(placedPos, 0, sizeof(SeqInterval) * (FI->numFragments() + 1));
// Just some logging. Count the number of reads we try to place.
uint32 nToPlaceContained = 0;
uint32 nToPlace = 0;
uint32 nPlacedContained = 0;
uint32 nPlaced = 0;
uint32 nFailedContained = 0;
uint32 nFailed = 0;
for (uint32 fid=1; fid<FI->numFragments()+1; fid++)
if (Unitig::fragIn(fid) == 0)
if (OG->isContained(fid))
nToPlaceContained++;
else
nToPlace++;
writeLog("placeContains()-- placing %u contained and %u unplaced reads, with %d threads.\n",
nToPlaceContained, nToPlace, numThreads);
// Do the placing!
#pragma omp parallel for schedule(dynamic, blockSize)
for (uint32 fid=1; fid<FI->numFragments()+1; fid++) {
bool enableLog = true;
if (Unitig::fragIn(fid) > 0)
continue;
// Place the read.
vector<overlapPlacement> placements;
placeFragUsingOverlaps(unitigs, AS_MAX_ERATE, NULL, fid, placements);
// Search the placements for the highest expected identity placement using all overlaps in the unitig.
uint32 b = UINT32_MAX;
for (uint32 i=0; i<placements.size(); i++) {
Unitig *tig = unitigs[placements[i].tigID];
if (placements[i].fCoverage < 0.99) // Ignore partially placed reads.
continue;
if (tig->ufpath.size() == 1) // Ignore placements in singletons.
continue;
uint32 bgn = (placements[i].position.bgn < placements[i].position.end) ? placements[i].position.bgn : placements[i].position.end;
uint32 end = (placements[i].position.bgn < placements[i].position.end) ? placements[i].position.end : placements[i].position.bgn;
double erate = placements[i].errors / placements[i].aligned;
if (tig->overlapConsistentWithTig(5.0, bgn, end, erate) < 0.5) {
if ((enableLog == true) && (logFileFlagSet(LOG_PLACE_UNPLACED)))
writeLog("frag %8u tested tig %6u (%6u reads) at %8u-%8u (cov %7.5f erate %6.4f) - HIGH ERROR\n",
fid, placements[i].tigID, tig->ufpath.size(), placements[i].position.bgn, placements[i].position.end, placements[i].fCoverage, erate);
continue;
}
if ((enableLog == true) && (logFileFlagSet(LOG_PLACE_UNPLACED)))
writeLog("frag %8u tested tig %6u (%6u reads) at %8u-%8u (cov %7.5f erate %6.4f)\n",
fid, placements[i].tigID, tig->ufpath.size(), placements[i].position.bgn, placements[i].position.end, placements[i].fCoverage, erate);
if ((b == UINT32_MAX) ||
(placements[i].errors / placements[i].aligned < placements[b].errors / placements[b].aligned))
b = i;
}
// If we didn't find a best, b will be invalid; set positions for adding to a new tig.
// If we did, save both the position it was placed at, and the tigID it was placed in.
if (b == UINT32_MAX) {
if ((enableLog == true) && (logFileFlagSet(LOG_PLACE_UNPLACED)))
writeLog("frag %8u remains unplaced\n", fid);
placedPos[fid].bgn = 0;
placedPos[fid].end = FI->fragmentLength(fid);
}
else {
if ((enableLog == true) && (logFileFlagSet(LOG_PLACE_UNPLACED)))
writeLog("frag %8u placed tig %6u (%6u reads) at %8u-%8u (cov %7.5f erate %6.4f)\n",
fid, placements[b].tigID, unitigs[placements[b].tigID]->ufpath.size(),
placements[b].position.bgn, placements[b].position.end,
placements[b].fCoverage,
placements[b].errors / placements[b].aligned);
placedTig[fid] = placements[b].tigID;
placedPos[fid] = placements[b].position;
//.........这里部分代码省略.........
示例10: writeLog
void
checkUnitigMembership(UnitigVector &unitigs) {
int nutg = 0;
int nfrg = 0;
writeLog("checkUnitigMembership()-- numfrags=%d\n", FI->numFragments());
uint32 *inUnitig = new uint32 [FI->numFragments()+1];
uint32 logSizeMax = 0;
uint32 logSize[64] = {0};
for (uint32 i=0; i<FI->numFragments()+1; i++)
inUnitig[i] = noUnitig;
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *tig = unitigs[ti];
int32 len = 0;
if (tig) {
nutg++;
for (uint32 fi=0; fi<tig->ufpath.size(); fi++) {
ufNode *frg = &tig->ufpath[fi];
nfrg++;
if (frg->ident > FI->numFragments())
writeLog("HUH? ident=%d numfrags=%d\n", frg->ident, FI->numFragments());
inUnitig[frg->ident] = ti;
len = MAX(len, frg->position.bgn);
len = MAX(len, frg->position.end);
}
uint32 ls = (uint32)(log10(len) / log10(2));
logSizeMax = (logSizeMax < ls) ? ls : logSizeMax;
logSize[ls]++;
}
}
int lost = 0;
int found = 0;
for (uint32 i=0; i<FI->numFragments()+1; i++) {
if (FI->fragmentLength(i) > 0) {
if (inUnitig[i] == 0) {
writeLog("ERROR frag %d is in unitig 0!\n", i);
} else if (inUnitig[i] != noUnitig) {
found++;
} else {
writeLog("ERROR frag %d disappeared!\n", i);
lost++;
}
}
}
writeLog("checkUnitigMembership()-- nutg=%d nfrg=%d lost=%d found=%d\n", nutg, nfrg, lost, found);
writeLog("checkUnitigMembership()-- log2 length histogram:\n");
for (uint32 i=5; i<=logSizeMax; i++)
writeLog("checkUnitigMembership()-- %2u (%9u-%9u) %u\n", i, (uint32)1 << i, (uint32)1 << (i+1), logSize[i]);
assert(lost == 0);
delete [] inUnitig;
}
示例11: sprintf
// For every unitig, report the best overlaps contained in the
// unitig, and all overlaps contained in the unitig.
//
// Wow, this is ancient.
//
void
writeOverlapsUsed(UnitigVector &unitigs,
char *prefix) {
char N[FILENAME_MAX];
sprintf(N, "%s.unused.best.edges", prefix);
FILE *F = fopen(N, "w");
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *tig = unitigs[ti];
Unitig *ovl = NULL;
char tyt = 'C';
if (tig == NULL)
continue;
if (tig->_isUnassembled) tyt = 'U';
if (tig->_isBubble) tyt = 'B';
if (tig->_isRepeat) tyt = 'R';
if (tig->_isCircular) tyt = 'O';
for (uint32 fi=0; fi<tig->ufpath.size(); fi++) {
ufNode *frg = &tig->ufpath[fi];
ufNode *oth = NULL;
// Report the unused best edge
BestEdgeOverlap *be5 = OG->getBestEdgeOverlap(frg->ident, false);
uint32 rd5 = (be5 == NULL) ? 0 : be5->fragId();
Unitig *tg5 = (be5 == NULL) ? NULL : unitigs[Unitig::fragIn(rd5)];
char ty5 = 'C';
if ((tg5 != NULL) && (tg5->tigID() != tig->tigID())) {
uint32 ord = Unitig::pathPosition(rd5);
ufNode *oth = &tg5->ufpath[ord];
if (tig->_isUnassembled) ty5 = 'U';
if (tig->_isBubble) ty5 = 'B';
if (tig->_isRepeat) ty5 = 'R';
if (tig->_isCircular) ty5 = 'O';
fprintf(F, "tig %7u %c read %8u at %9u %-9u %c' -- %8d %-8d -- tig %7u %c read %8u at %9u %-9u %c'\n",
tig->tigID(), tyt, frg->ident, frg->position.bgn, frg->position.end, '5',
be5->ahang(), be5->bhang(),
tg5->tigID(), ty5, oth->ident, oth->position.bgn, oth->position.end, (be5->frag3p() == false) ? '5' : '3');
}
BestEdgeOverlap *be3 = OG->getBestEdgeOverlap(frg->ident, true);
uint32 rd3 = (be3 == NULL) ? 0 : be3->fragId();
Unitig *tg3 = (be3 == NULL) ? NULL : unitigs[Unitig::fragIn(rd3)];
char ty3 = 'C';
if ((tg3 != NULL) && (tg3->tigID() != tig->tigID())) {
uint32 ord = Unitig::pathPosition(rd3);
ufNode *oth = &tg3->ufpath[ord];
if (tig->_isUnassembled) ty3 = 'U';
if (tig->_isBubble) ty3 = 'B';
if (tig->_isRepeat) ty3 = 'R';
if (tig->_isCircular) ty3 = 'O';
fprintf(F, "tig %7u %c read %8u at %9u %-9u %c' -- %8d %-8d -- tig %7u %c read %8u at %9u %-9u %c'\n",
tig->tigID(), tyt, frg->ident, frg->position.bgn, frg->position.end, '3',
be3->ahang(), be3->bhang(),
tg3->tigID(), ty3, oth->ident, oth->position.bgn, oth->position.end, (be3->frag3p() == false) ? '5' : '3');
}
}
}
fclose(F);
}
示例12: checkUnitigMembership
void
writeUnitigsToStore(UnitigVector &unitigs,
char *fileprefix,
char *tigStorePath,
uint32 frg_count_target,
bool isFinal) {
uint32 utg_count = 0;
uint32 frg_count = 0;
uint32 prt_count = 1;
char filename[FILENAME_MAX] = {0};
uint32 *partmap = new uint32 [unitigs.size()];
// This code closely follows that in AS_CGB_unitigger.c::output_the_chunks()
if (isFinal)
checkUnitigMembership(unitigs);
// Open up the initial output file
sprintf(filename, "%s.iidmap", fileprefix);
FILE *iidm = fopen(filename, "w");
assert(NULL != iidm);
sprintf(filename, "%s.partitioning", fileprefix);
FILE *part = fopen(filename, "w");
assert(NULL != part);
sprintf(filename, "%s.partitioningInfo", fileprefix);
FILE *pari = fopen(filename, "w");
assert(NULL != pari);
// Step through all the unitigs once to build the partition mapping and IID mapping.
tgStore *tigStore = new tgStore(tigStorePath);
tgTig *tig = new tgTig;
for (uint32 tigID=0, ti=0; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
if ((utg == NULL) || (utg->getNumFrags() == 0))
continue;
assert(utg->getLength() > 0);
// Convert the bogart tig to a tgTig and save to the store.
unitigToTig(tig, (isFinal) ? tigID : ti, utg);
tigID++;
tigStore->insertTig(tig, false);
// Increment the partition if the current one is too large.
if ((frg_count + utg->getNumFrags() >= frg_count_target) &&
(frg_count > 0)) {
fprintf(pari, "Partition %d has %d unitigs and %d fragments.\n",
prt_count, utg_count, frg_count);
prt_count++;
utg_count = 0;
frg_count = 0;
}
// Note that the tig is included in this partition.
utg_count += 1;
frg_count += utg->getNumFrags();
// Map the tig to a partition, and log both the tig-to-partition map and the partition-to-read map.
fprintf(iidm, "bogart "F_U32" -> tig "F_U32" (in partition "F_U32" with "F_U32" frags)\n",
utg->id(),
utg->tigID(),
prt_count,
utg->getNumFrags());
for (uint32 fragIdx=0; fragIdx<utg->getNumFrags(); fragIdx++)
fprintf(part, "%d\t%d\n", prt_count, utg->ufpath[fragIdx].ident);
}
fprintf(pari, "Partition %d has %d unitigs and %d fragments.\n", // Don't forget to log the last partition!
prt_count, utg_count, frg_count);
fclose(pari);
fclose(part);
fclose(iidm);
delete tig;
delete tigStore;
}
示例13:
intersectionList::intersectionList(UnitigVector &unitigs) {
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *tig = unitigs[ti];
if (tig == NULL)
continue;
intersectionEvidence *evidence = new intersectionEvidence [tig->ufpath.size()];
for (uint32 fi=0; fi<tig->ufpath.size(); fi++) {
ufNode *frg = &tig->ufpath[fi];
if (OG->isContained(frg->ident))
continue;
// For my best overlap, the ID of the unitig that the overlapping fragment is in.
evidence[fi].edge5 = *OG->getBestEdgeOverlap(frg->ident, false);
evidence[fi].edge3 = *OG->getBestEdgeOverlap(frg->ident, true);
evidence[fi].frag5tig = tig->fragIn(evidence[fi].edge5.fragId());
evidence[fi].frag3tig = tig->fragIn(evidence[fi].edge3.fragId());
// Do NOT initialize these! An earlier fragment could have already confirmed an end.
// Properly, only the 5' end of a forward fragment (or 3' end of a reverse fragment) can be
// confirmed already (otherwise the tig is nonsense), but we don't yet check that.
//
//evidence[fi].frag5confirmed = false;
//evidence[fi].frag3confirmed = false;
// But, because the path could be promiscuous, not every overlap to a different tig is bad.
//
// If my best overlap is to a different tig, but there is an overlapping fragment (in the
// unitig placement) with a best edge to me, I'm still good. The BOG build this unitig using
// the edge from the other fragment to me.
//
// If the fragments do not overlap in the layout (yet the best edge still exists) that is a
// self-intersection.
//
// The two blocks are identical, except for 'edge3' and 'edge5'.
if (evidence[fi].frag5tig == tig->id()) {
uint32 ti = tig->pathPosition(evidence[fi].edge5.fragId());
ufNode *trg = &tig->ufpath[ti];
uint32 minf = (frg->position.bgn < frg->position.end) ? frg->position.bgn : frg->position.end;
uint32 maxf = (frg->position.bgn < frg->position.end) ? frg->position.end : frg->position.bgn;
uint32 mint = (trg->position.bgn < trg->position.end) ? trg->position.bgn : trg->position.end;
uint32 maxt = (trg->position.bgn < trg->position.end) ? trg->position.end : trg->position.bgn;
// If they overlap, mark as confirmed, else remember an intersection.
if (((minf < mint) && (mint < maxf)) || // t begins inside f
((mint < minf) && (minf < maxt))) { // f begins inside t
if (evidence[fi].edge5.frag3p())
evidence[ti].frag3confirmed = true;
else
evidence[ti].frag5confirmed = true;
} else {
evidence[fi].frag5self = true;
// Not the correct place to report this. Some of these get confirmed by later fragments.
//writeLog("BUG1 F: %d,%d T %d,%d\n", minf, maxf, mint, maxt);
//writeLog("INTERSECT from unitig %d frag %d end %d TO unitig %d frag %d end %d (SELF)\n",
// tig->id(), frg->ident, 5, evidence[fi].frag5tig, evidence[fi].edge5.fragId(), evidence[fi].edge5.frag3p() ? 3 : 5);
}
}
if (evidence[fi].frag3tig == tig->id()) {
uint32 ti = tig->pathPosition(evidence[fi].edge3.fragId());
ufNode *trg = &tig->ufpath[ti];
uint32 minf = (frg->position.bgn < frg->position.end) ? frg->position.bgn : frg->position.end;
uint32 maxf = (frg->position.bgn < frg->position.end) ? frg->position.end : frg->position.bgn;
uint32 mint = (trg->position.bgn < trg->position.end) ? trg->position.bgn : trg->position.end;
uint32 maxt = (trg->position.bgn < trg->position.end) ? trg->position.end : trg->position.bgn;
if (((minf < mint) && (mint < maxf)) || // t begins inside f
((mint < minf) && (minf < maxt))) { // f begins inside t
if (evidence[fi].edge3.frag3p())
evidence[ti].frag3confirmed = true;
else
evidence[ti].frag5confirmed = true;
} else {
evidence[fi].frag3self = true;
// Not the correct place to report this. Some of these get confirmed by later fragments.
//writeLog("BUG2 F: %d,%d T %d,%d\n", minf, maxf, mint, maxt);
//writeLog("INTERSECT from unitig %d frag %d end %d TO unitig %d frag %d end %d (SELF)\n",
// tig->id(), frg->ident, 3, evidence[fi].frag3tig, evidence[fi].edge3.fragId(), evidence[fi].edge3.frag3p() ? 3 : 5);
}
}
}
//.........这里部分代码省略.........
示例14: if
void
reportUnitigs(UnitigVector &unitigs, const char *prefix, const char *name, uint64 genomeSize) {
// Generate n50. Assumes unitigs have been 'classified' already.
vector<uint32> unassembledLength;
vector<uint32> bubbleLength;
vector<uint32> repeatLength;
vector<uint32> circularLength;
vector<uint32> contigLength;
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
if (utg == NULL)
continue;
if (utg->_isUnassembled) {
unassembledLength.push_back(utg->getLength());
}
else if (utg->_isBubble) {
bubbleLength.push_back(utg->getLength());
}
else if (utg->_isRepeat) {
repeatLength.push_back(utg->getLength());
}
else if (utg->_isCircular) {
circularLength.push_back(utg->getLength());
}
else {
contigLength.push_back(utg->getLength());
}
}
char N[FILENAME_MAX];
sprintf(N, "%s.sizes", getLogFilePrefix());
errno = 0;
FILE *F = fopen(N, "w");
if (errno == 0) {
reportN50(F, unassembledLength, "UNASSEMBLED", genomeSize);
reportN50(F, bubbleLength, "BUBBLE", genomeSize);
reportN50(F, repeatLength, "REPEAT", genomeSize);
reportN50(F, circularLength, "CIRCULAR", genomeSize);
reportN50(F, contigLength, "CONTIGS", genomeSize);
fclose(F);
}
if (logFileFlagSet(LOG_INTERMEDIATE_UNITIGS) == 0)
return;
// Dump to an intermediate store.
char tigStorePath[FILENAME_MAX];
sprintf(tigStorePath, "%s.tigStore", getLogFilePrefix());
fprintf(stderr, "Creating intermediate tigStore '%s'\n", tigStorePath);
uint32 numFragsT = 0;
uint32 numFragsP = 0;
uint64 utgLen = 0;
// Compute average frags per partition.
for (uint32 ti=0; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
if (utg == NULL)
continue;
numFragsT += utg->ufpath.size();
if (utg->ufpath.size() > 2)
utgLen += utg->getLength();
}
if (utgLen < 16 * 1024 * 1024)
numFragsP = numFragsT / 7;
else if (utgLen < 64 * 1024 * 1024)
numFragsP = numFragsT / 63;
else
numFragsP = numFragsT / 127;
// Dump the unitigs to an intermediate store.
setParentAndHang(unitigs);
writeUnitigsToStore(unitigs, tigStorePath, tigStorePath, numFragsP, false);
}
示例15: checkUnitigMembership
void
writeUnitigsToStore(UnitigVector &unitigs,
char *fileprefix,
char *tigStorePath,
uint32 frg_count_target,
bool isFinal) {
uint32 utg_count = 0;
uint32 frg_count = 0;
uint32 prt_count = 1;
char filename[FILENAME_MAX] = {0};
uint32 *partmap = new uint32 [unitigs.size()];
// This code closely follows that in AS_CGB_unitigger.c::output_the_chunks()
if (isFinal)
checkUnitigMembership(unitigs);
// Open up the initial output file
sprintf(filename, "%s.iidmap", fileprefix);
FILE *iidm = fopen(filename, "w");
assert(NULL != iidm);
sprintf(filename, "%s.partitioning", fileprefix);
FILE *part = fopen(filename, "w");
assert(NULL != part);
sprintf(filename, "%s.partitioningInfo", fileprefix);
FILE *pari = fopen(filename, "w");
assert(NULL != pari);
// Step through all the unitigs once to build the partition mapping and IID mapping.
memset(partmap, 0xff, sizeof(uint32) * unitigs.size());
for (uint32 iumiid=0, ti=0; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
uint32 nf = (utg) ? utg->getNumFrags() : 0;
if ((utg == NULL) || (nf == 0))
continue;
assert(utg->getLength() > 0);
assert(nf == utg->ufpath.size());
if ((frg_count + nf >= frg_count_target) &&
(frg_count > 0)) {
fprintf(pari, "Partition %d has %d unitigs and %d fragments.\n",
prt_count, utg_count, frg_count);
prt_count++;
utg_count = 0;
frg_count = 0;
}
uint32 tigid = (isFinal) ? iumiid : ti;
assert(tigid < unitigs.size());
partmap[tigid] = prt_count;
fprintf(iidm, "Unitig "F_U32" == IUM "F_U32" (in partition "F_U32" with "F_U32" frags)\n",
utg->id(),
(tigid),
partmap[(tigid)],
nf);
for (uint32 fragIdx=0; fragIdx<nf; fragIdx++) {
ufNode *f = &utg->ufpath[fragIdx];
fprintf(part, "%d\t%d\n", prt_count, f->ident);
}
utg_count += 1;
frg_count += nf;
iumiid++;
}
fprintf(pari, "Partition %d has %d unitigs and %d fragments.\n",
prt_count, utg_count, frg_count);
fclose(pari);
fclose(part);
fclose(iidm);
// Step through all the unitigs once to build the partition mapping and IID mapping.
tgStore *tigStore = new tgStore(tigStorePath);
tgTig *tig = new tgTig;
for (uint32 iumiid=0, ti=0; ti<unitigs.size(); ti++) {
Unitig *utg = unitigs[ti];
uint32 nf = (utg) ? utg->getNumFrags() : 0;
if ((utg == NULL) || (nf == 0))
continue;
unitigToTig(tig, (isFinal) ? iumiid : ti, utg);
tigStore->insertTig(tig, false);
//.........这里部分代码省略.........