本文整理汇总了C++中UndirectedGraph::addEdge方法的典型用法代码示例。如果您正苦于以下问题:C++ UndirectedGraph::addEdge方法的具体用法?C++ UndirectedGraph::addEdge怎么用?C++ UndirectedGraph::addEdge使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类UndirectedGraph
的用法示例。
在下文中一共展示了UndirectedGraph::addEdge方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getICTree
UndirectedGraph* GreedyHeuristic::getICTree(UndirectedGraph* t1, UndirectedGraph* t2, list<Edge*>* iset, UndirectedGraph* ug) {
int cardinality = ((*t1).vertices).size() - 1;
UndirectedGraph* greedyTree = new UndirectedGraph();
//cout << "iset size: " << iset->size() << endl;
Edge* minE = getMinEdge(iset);
greedyTree->addVertex(minE->fromVertex());
greedyTree->addVertex(minE->toVertex());
greedyTree->addEdge(minE);
generateUCNeighborhoodFor(ug,minE);
for (int k = 2; k < ((*ug).vertices).size(); k++) {
Edge* newEdge = getICNeighbor(iset);
Vertex* newVertex = NULL;
if (greedyTree->contains(newEdge->fromVertex())) {
newVertex = newEdge->toVertex();
}
else {
newVertex = newEdge->fromVertex();
}
greedyTree->addVertex(newVertex);
greedyTree->addEdge(newEdge);
adaptUCNeighborhoodFor(newEdge,newVertex,greedyTree,ug);
}
if ((greedyTree->vertices).size() > (cardinality + 1)) {
shrinkTree(greedyTree,cardinality);
}
greedyTree->setWeight(weightOfSolution(greedyTree));
return greedyTree;
}
示例2:
TEST(Graph, adjaent) {
UndirectedGraph graph {20};
graph.addEdge(0, 1);
graph.addEdge(0, 2);
graph.addEdge(0, 5);
Iterator<int>* iter = graph.adjacent(0);
EXPECT_EQ(5, iter->next());
EXPECT_EQ(2, iter->next());
EXPECT_EQ(1, iter->next());
}
示例3: getGreedyHeuristicResult
void GreedyHeuristic::getGreedyHeuristicResult(UndirectedGraph* aTree, int cardinality, string ls_type) {
UndirectedGraph* greedyTree = new UndirectedGraph();
bool started = false;
for (list<Edge*>::iterator anEdge = ((*graph).edges).begin(); anEdge != ((*graph).edges).end(); anEdge++) {
greedyTree->clear();
greedyTree->addVertex((*anEdge)->fromVertex());
greedyTree->addVertex((*anEdge)->toVertex());
greedyTree->addEdge(*anEdge);
generateNeighborhoodFor(*anEdge);
for (int k = 1; k < cardinality; k++) {
Edge* kctn = getMinNeighbor();
Vertex* nn = determineNeighborNode(kctn,greedyTree);
greedyTree->addVertex(nn);
greedyTree->addEdge(kctn);
adaptNeighborhoodFor(kctn,nn,greedyTree);
}
if (!(ls_type == "no")) {
/* application of local search */
if (ls_type == "leafs") {
LocalSearch lsm(graph,greedyTree);
lsm.run(ls_type);
}
else {
if (ls_type == "cycles_leafs") {
//cout << *greedyTree << endl;
LocalSearchB lsm;
lsm.run(graph,greedyTree);
}
}
/* end local search */
/*
if (!isConnectedTree(greedyTree)) {
cout << "non-connected tree" << endl;
}
*/
}
greedyTree->setWeight(weightOfSolution(greedyTree));
if (started == false) {
started = true;
aTree->copy(greedyTree);
}
else {
if ((greedyTree->weight()) < (aTree->weight())) {
aTree->copy(greedyTree);
}
}
}
delete(greedyTree);
}
示例4: convertToUndirectedGraph
UndirectedGraph* DirectedGraph::convertToUndirectedGraph() {
UndirectedGraph* result = new UndirectedGraph(maxNodeId);
for (int i = 0; i != maxNodeId + 1; i++) {
if (!hasNode(i))
continue;
ListType* neighborsList = inNeighborsTable[i];
for (ListType::iterator neighbor = neighborsList->begin();
neighbor != neighborsList->end(); neighbor++) {
result->addEdge(*neighbor, i);
}
neighborsList = outNeighborsTable[i];
for (ListType::iterator neighbor = neighborsList->begin();
neighbor != neighborsList->end(); neighbor++) {
result->addEdge(*neighbor, i);
}
}
result->sort();
return result;
}
示例5: uniteOnCommonBase
UndirectedGraph* GreedyHeuristic::uniteOnCommonBase(UndirectedGraph* t1, UndirectedGraph* t2, list<Edge*>* is) {
UndirectedGraph* ugh = new UndirectedGraph();
for (list<Vertex*>::iterator v = ((*t1).vertices).begin(); v != ((*t1).vertices).end(); v++) {
ugh->addVertex(*v);
}
for (list<Vertex*>::iterator v = ((*t2).vertices).begin(); v != ((*t2).vertices).end(); v++) {
if (!(ugh->contains(*v))) {
ugh->addVertex(*v);
}
}
for (list<Edge*>::iterator e = ((*t1).edges).begin(); e != ((*t1).edges).end(); e++) {
ugh->addEdge(*e);
}
for (list<Edge*>::iterator e = ((*t2).edges).begin(); e != ((*t2).edges).end(); e++) {
if (!(ugh->contains(*e))) {
ugh->addEdge(*e);
}
else {
is->push_back(*e);
}
}
return ugh;
}
示例6: readGraphFromFile
UndirectedGraph * readGraphFromFile(char * filename) {
char token;
int x=0, y=0, i=0;
int nodes_count = 0;
UndirectedGraph *graph;
FILE *file = fopen(filename, (const char *)"r");
if (file == NULL) {
std::cout << "Neexistujici soubor:" << filename << endl;
exit(EXIT_FAILURE);
}
if (fscanf(file, "%d", &nodes_count) != 1) {
std:cout << "Nelze nacist prvni radek vstupniho souboru" <<endl;
exit(EXIT_FAILURE);
}
graph = new UndirectedGraph(nodes_count);
while (fscanf(file, "%c", &token) == 1) {
if (token == '\r') {
continue;
}
if (token == '\n') {
//printf("\n");
if (i > 0) {
x=0;
y++;
}
continue;
}
if(token == '1') {
graph->addEdge(x,y);
}
x++;
i++;
}
fclose(file);
return graph;
}
示例7: minSpanningTree
/**
* Removes all edges from the graph except those necessary to
* form a minimum cost spanning tree of all vertices using Prim's
* algorithm.
*
* The graph must be in a state where such a spanning tree
* is possible. To call this method when a spanning tree is
* impossible is undefined behavior.
*/
UndirectedGraph UndirectedGraph::minSpanningTree() {
// Define based on the Wikipedia Pseudocode
UndirectedGraph nug;
std::priority_queue<Edge> edges;
for (vertexmap::iterator vi = this->vertices.begin();
vi != this->vertices.end();
vi++)
vi->second->setVisited(false);
Vertex *cur = this->vertices.begin()->second;
cur->setVisited(true);
for (Vertex::edgemap::iterator ei = cur->edges.begin();
ei != cur->edges.end();
ei++)
edges.push(ei->second);
while (!edges.empty() && nug.vertices.size() < this->vertices.size()) {
Edge small = edges.top();
edges.pop();
Vertex *to = small.getTo();
if (to->wasVisited())
continue;
else {
to->setVisited(true);
nug.addEdge(small);
for (Vertex::edgemap::iterator ei = to->edges.begin();
ei != to->edges.end();
ei++)
if (!ei->second.getTo()->wasVisited())
edges.push(ei->second);
}
} // END WHILE
return nug;
}
示例8: main
/**
* Entry point into the netplan program.
*
* -Reads a file from the filesystem according to the specification for
* PA3, creating an UndirectedGraph.
* -Finds the total cost & ping time of the graph as presented in the input
* file.
* -Determines the minimum cost graph from the original graph.
* -Finds the total cost & ping time of the minimum cost graph.
* -Finds the change of cost & ping time from the original graph to the
* minimum cost graph.
* -Prints the results to stdout.
*
* Usage:
* ./netplan infile
*
*/
int main(int argc, char **argv) {
// Data Structs to hold the variables
vector<string> to;
vector<string> from;
vector<unsigned int> cost;
vector<unsigned int> length;
// if number of arguments passed in is not 2, print usage
if (argc != 2) {
std::cerr << "Usage: " << argv[0] << " infile" << std::endl;
return EXIT_FAILURE;
}
std::ifstream in(argv[1]);
if (!in) {
std::cerr << "Unable to open file for reading." << std::endl;
return EXIT_FAILURE;
}
// string and int variables for adding to the vectors
string str;
unsigned int i;
/**
* while file is not empty, parse input so that we can make a graph from
* the input
*/
while(true){
in >> str;
if(in.eof()) break;
to.push_back(str);
in >> str;
from.push_back(str);
in >> i;
cost.push_back(i);
in >> i;
length.push_back(i);
}
/**
* create undirected graph from the input file
*/
UndirectedGraph *bob = new UndirectedGraph();
for(unsigned int j = 0; j < to.size(); j++){
bob->addEdge(to[j], from[j], cost[j], length[j]);
}
// get total edge cost of inital graph
unsigned int totalCost = bob->totalEdgeCost();
// get total distance of inital graph, by using Dijkstra's algorithm on
// all the vertices
unsigned int totalTime = bob->totalDistance();
// create minimum spanning tree of the inital graph, using Prim's algorithm
bob->minSpanningTree();
// get total edge cost of minimum spanning tree
unsigned int mstCost = bob->totalEdgeCost();
// get total distance of minimum spanning tree, using Dijkstra's algorithm
// on all the vertices
unsigned int mstTime = bob->totalDistance();
// print out all the costs and distances
cout << totalCost << endl;
cout << mstCost << endl;
cout << totalCost - mstCost << endl;
cout << totalTime << endl;
cout << mstTime << endl;
cout << mstTime - totalTime << endl;
// delete graph
delete(bob);
return EXIT_SUCCESS;
}
示例9: main
int main() {
cout << "--------------GRAPHTESTERFILE-----------------" << endl;
cout << "CREATING GRAPH" << endl;
UndirectedGraph testG = UndirectedGraph();
cout << "ADDING EDGE WITHOUT ANY VERTICES EXISTING" << endl;
testG.addEdge("Yahoo","Google",13,13);
cout << "total edge cost: ";
cout << testG.totalEdgeCost() << endl;
cout << "ADDING DUPLICATE" << endl;
testG.addEdge("Yahoo","Google",9,9);
cout << "total edge cost: ";
cout << testG.totalEdgeCost() << endl;
cout << "ADDING REVERSED DUPLICATE" << endl;
testG.addEdge("Google","Yahoo",7,7);
cout << "total edge cost: ";
cout << testG.totalEdgeCost() << endl;
cout << "ADDING EDGE" << endl;
testG.addEdge("Yahoo","Microsoft",71,71);
cout << "total edge cost: ";
cout << testG.totalEdgeCost() << endl;
cout << "ADDING UNCONNECTED EDGE" << endl;
testG.addEdge("Netflix","Yelp",21,21);
cout << "total edge cost: ";
cout << testG.totalEdgeCost() << endl;
cout << "SETTING UP NON-MST" << endl;
testG.addEdge("Google","Yahoo",2,2);
testG.addEdge("Yahoo","Microsoft",3,3);
testG.addEdge("Microsoft","Netflix",5,5);
testG.addEdge("Netflix","Yelp",7,7);
testG.addEdge("Yelp","Google",11,11);
testG.addEdge("Netflix","Google",13,13);
testG.addEdge("Google","Microsoft",17,17);
cout << "total edge cost: ";
cout << testG.totalEdgeCost() << endl;
cout << "CREATING MST" << endl;
testG.minSpanningTree();
cout << "total edge cost: ";
cout << testG.totalEdgeCost() << endl;
cout << "TEST TOTAL DISTANCE" << endl;
cout << "total distance: ";
cout << testG.totalDistance("Google") << endl;
cout << "TEST TOTAL DISTANCE NEW GRAPH" << endl;
UndirectedGraph graphTwo = UndirectedGraph();
graphTwo.addEdge("Google","Yahoo",2,2);
graphTwo.addEdge("Yahoo","Microsoft",3,3);
cout << graphTwo.totalDistance("Google") << endl;
cout << graphTwo.totalDistance("Yahoo") << endl;
cout << graphTwo.totalDistance("Microsoft") << endl;
cout << graphTwo.totalDistance() << endl;
return 1;
}