本文整理汇总了C++中UnSerialization::loadHypotheses方法的典型用法代码示例。如果您正苦于以下问题:C++ UnSerialization::loadHypotheses方法的具体用法?C++ UnSerialization::loadHypotheses怎么用?C++ UnSerialization::loadHypotheses使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类UnSerialization
的用法示例。
在下文中一共展示了UnSerialization::loadHypotheses方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
// -----------------------------------------------------------------------
// -----------------------------------------------------------------------
DataReader::DataReader(const nor_utils::Args& args, int verbose) : _verbose(verbose), _args(args)
{
string mdpTrainFileName = _args.getValue<string>("traintestmdp", 0);
string testFileName = _args.getValue<string>("traintestmdp", 1);
string shypFileName = _args.getValue<string>("traintestmdp", 3);
_numIterations = _args.getValue<int>("traintestmdp", 2);
string tmpFname = _args.getValue<string>("traintestmdp", 4);
if (_verbose > 0)
cout << "Loading arff data for MDP learning..." << flush;
// load the arff
loadInputData(mdpTrainFileName, testFileName, shypFileName);
if (_verbose > 0)
cout << "Done." << endl << flush;
if (_verbose > 0)
cout << "Loading strong hypothesis..." << flush;
// The class that loads the weak hypotheses
UnSerialization us;
// loads them
us.loadHypotheses(shypFileName, _weakHypotheses, _pTrainData);
if (_numIterations<_weakHypotheses.size())
_weakHypotheses.resize(_numIterations);
if (_verbose > 0)
cout << "Done." << endl << flush;
assert( _weakHypotheses.size() >= _numIterations );
// calculate the sum of alphas
vector<BaseLearner*>::iterator it;
_sumAlphas=0.0;
for( it = _weakHypotheses.begin(); it != _weakHypotheses.end(); ++it )
{
BaseLearner* currBLearner = *it;
_sumAlphas += currBLearner->getAlpha();
}
}
示例2: init
// -----------------------------------------------------------------------
// -----------------------------------------------------------------------
void AdaBoostMDPClassifier::init()
{
string mdpTrainFileName = _args.getValue<string>("traintestmdp", 0);
string testFileName = _args.getValue<string>("traintestmdp", 1);
string shypFileName = _args.getValue<string>("traintestmdp", 3);
_numIterations = _args.getValue<int>("traintestmdp", 2);
string tmpFname = _args.getValue<string>("traintestmdp", 4);
_outputStream.open( tmpFname.c_str() );
if (_verbose > 0)
cout << "Loading arff data for MDP learning..." << flush;
// load the arff
loadInputData(mdpTrainFileName, testFileName, shypFileName);
if (_verbose > 0)
cout << "Done." << endl << flush;
if (_verbose > 0)
cout << "Loading strong hypothesis..." << flush;
// The class that loads the weak hypotheses
UnSerialization us;
// loads them
us.loadHypotheses(shypFileName, _weakHypotheses, _pData);
_weakHypotheses.resize(_numIterations);
if (_verbose > 0)
cout << "Done." << endl << flush;
assert( _weakHypotheses.size() >= _numIterations );
if (_verbose > 0)
cout << "Allocating grid world..." << flush;
createGridWorld();
if (_verbose > 0)
cout << "Done." << endl << flush;
}
示例3: resumeWeakLearners
int FilterBoostLearner::resumeWeakLearners(InputData* pTrainingData)
{
if (_resumeShypFileName.empty())
return 0;
if (_verbose > 0)
cout << "Reloading strong hypothesis file <" << _resumeShypFileName << ">.." << flush;
// The class that loads the weak hypotheses
UnSerialization us;
// loads them
us.loadHypotheses(_resumeShypFileName, _foundHypotheses, pTrainingData, _verbose);
if (_verbose > 0)
cout << "Done!" << endl;
// return the number of iterations found
return static_cast<int>( _foundHypotheses.size() );
}
示例4: load
void ParasiteLearner::load(nor_utils::StreamTokenizer& st)
{
// cout << "Sorry, you can't load a ParasiteLearner" << endl << flush;
// exit(1);
// Calling the super-class method
BaseLearner::load(st);
_signOfAlpha = UnSerialization::seekAndParseEnclosedValue<int>(st, "alphasign");
_nameBaseLearnerFile = UnSerialization::seekAndParseEnclosedValue<string>(st, "poolfile");
_selectedIdx = UnSerialization::seekAndParseEnclosedValue<int>(st, "learneridx");
if (_baseLearners.size() == 0) {
// load the base learners
if (_verbose >= 2)
cout << "loading " << _nameBaseLearnerFile << ".." << flush;
UnSerialization us;
us.loadHypotheses( _nameBaseLearnerFile, _baseLearners, _pTrainingData, _verbose);
if (_verbose >= 2)
cout << "finished " << endl << flush;
}
}
示例5: run
void MDDAGClassifier::run(const string& dataFileName, const string& shypFileName,
int numIterations, const string& outResFileName, int numRanksEnclosed)
{
InputData* pData = loadInputData(dataFileName, shypFileName);
if (_verbose > 0)
cout << "Loading strong hypothesis..." << flush;
// The class that loads the weak hypotheses
UnSerialization us;
// Where to put the weak hypotheses
vector<BaseLearner*> weakHypotheses;
// loads them
us.loadHypotheses(shypFileName, weakHypotheses, pData);
// where the results go
vector< ExampleResults* > results;
if (_verbose > 0)
cout << "Classifying..." << flush;
// get the results
computeResults( pData, weakHypotheses, results, numIterations );
const int numClasses = pData->getNumClasses();
if (_verbose > 0)
{
// well.. if verbose = 0 no results are displayed! :)
cout << "Done!" << endl;
vector< vector<float> > rankedError(numRanksEnclosed);
// Get the per-class error for the numRanksEnclosed-th ranks
for (int i = 0; i < numRanksEnclosed; ++i)
getClassError( pData, results, rankedError[i], i );
// output it
cout << endl;
cout << "Error Summary" << endl;
cout << "=============" << endl;
for ( int l = 0; l < numClasses; ++l )
{
// first rank (winner): rankedError[0]
cout << "Class '" << pData->getClassMap().getNameFromIdx(l) << "': "
<< setprecision(4) << rankedError[0][l] * 100 << "%";
// output the others on its side
if (numRanksEnclosed > 1 && _verbose > 1)
{
cout << " (";
for (int i = 1; i < numRanksEnclosed; ++i)
cout << " " << i+1 << ":[" << setprecision(4) << rankedError[i][l] * 100 << "%]";
cout << " )";
}
cout << endl;
}
// the overall error
cout << "\n--> Overall Error: "
<< setprecision(4) << getOverallError(pData, results, 0) * 100 << "%";
// output the others on its side
if (numRanksEnclosed > 1 && _verbose > 1)
{
cout << " (";
for (int i = 1; i < numRanksEnclosed; ++i)
cout << " " << i+1 << ":[" << setprecision(4) << getOverallError(pData, results, i) * 100 << "%]";
cout << " )";
}
cout << endl;
} // verbose
// If asked output the results
if ( !outResFileName.empty() )
{
const int numExamples = pData->getNumExamples();
ofstream outRes(outResFileName.c_str());
outRes << "Instance" << '\t' << "Forecast" << '\t' << "Labels" << '\n';
string exampleName;
for (int i = 0; i < numExamples; ++i)
{
// output the name if it exists, otherwise the number
// of the example
exampleName = pData->getExampleName(i);
if ( exampleName.empty() )
outRes << i << '\t';
else
outRes << exampleName << '\t';
//.........这里部分代码省略.........
示例6: saveLikelihoods
void MDDAGClassifier::saveLikelihoods(const string& dataFileName, const string& shypFileName,
const string& outFileName, int numIterations)
{
InputData* pData = loadInputData(dataFileName, shypFileName);
if (_verbose > 0)
cout << "Loading strong hypothesis..." << flush;
// The class that loads the weak hypotheses
UnSerialization us;
// Where to put the weak hypotheses
vector<BaseLearner*> weakHypotheses;
// loads them
us.loadHypotheses(shypFileName, weakHypotheses, pData);
// where the results go
vector< ExampleResults* > results;
if (_verbose > 0)
cout << "Classifying..." << flush;
const int numClasses = pData->getNumClasses();
const int numExamples = pData->getNumExamples();
ofstream outFile(outFileName.c_str());
string exampleName;
if (_verbose > 0)
cout << "Output likelihoods..." << flush;
// get the results
/////////////////////////////////////////////////////////////////////
// computeResults( pData, weakHypotheses, results, numIterations );
assert( !weakHypotheses.empty() );
// Initialize the output info
OutputInfo* pOutInfo = NULL;
if ( !_outputInfoFile.empty() )
pOutInfo = new OutputInfo(_outputInfoFile, "err");
// Creating the results structures. See file Structures.h for the
// PointResults structure
results.clear();
results.reserve(numExamples);
for (int i = 0; i < numExamples; ++i)
results.push_back( new ExampleResults(i, numClasses) );
// sum votes for classes
vector< AlphaReal > votesForExamples( numClasses );
vector< AlphaReal > expVotesForExamples( numClasses );
// iterator over all the weak hypotheses
vector<BaseLearner*>::const_iterator whyIt;
int t;
pOutInfo->initialize( pData );
// for every feature: 1..T
for (whyIt = weakHypotheses.begin(), t = 0;
whyIt != weakHypotheses.end() && t < numIterations; ++whyIt, ++t)
{
BaseLearner* currWeakHyp = *whyIt;
AlphaReal alpha = currWeakHyp->getAlpha();
// for every point
for (int i = 0; i < numExamples; ++i)
{
// a reference for clarity and speed
vector<AlphaReal>& currVotesVector = results[i]->getVotesVector();
// for every class
for (int l = 0; l < numClasses; ++l)
currVotesVector[l] += alpha * currWeakHyp->classify(pData, i, l);
}
// if needed output the step-by-step information
if ( pOutInfo )
{
pOutInfo->outputIteration(t);
pOutInfo->outputCustom(pData, currWeakHyp);
// Margins and edge requires an update of the weight,
// therefore I keep them out for the moment
//outInfo.outputMargins(pData, currWeakHyp);
//outInfo.outputEdge(pData, currWeakHyp);
pOutInfo->endLine();
} // for (int i = 0; i < numExamples; ++i)
// calculate likelihoods from votes
fill( votesForExamples.begin(), votesForExamples.end(), 0.0 );
AlphaReal lLambda = 0.0;
for (int i = 0; i < numExamples; ++i)
{
// a reference for clarity and speed
//.........这里部分代码省略.........
示例7: saveCalibratedPosteriors
void MDDAGClassifier::saveCalibratedPosteriors(const string& dataFileName, const string& shypFileName,
const string& outFileName, int numIterations)
{
InputData* pData = loadInputData(dataFileName, shypFileName);
if (_verbose > 0)
cout << "Loading strong hypothesis..." << flush;
// The class that loads the weak hypotheses
UnSerialization us;
// Where to put the weak hypotheses
vector<BaseLearner*> weakHypotheses;
// loads them
us.loadHypotheses(shypFileName, weakHypotheses, pData);
// where the results go
vector< ExampleResults* > results;
if (_verbose > 0)
cout << "Classifying..." << flush;
// get the results
computeResults( pData, weakHypotheses, results, numIterations );
const int numClasses = pData->getNumClasses();
const int numExamples = pData->getNumExamples();
ofstream outFile(outFileName.c_str());
string exampleName;
if (_verbose > 0)
cout << "Output posteriors..." << flush;
for (int i = 0; i < numExamples; ++i)
{
// output the name if it exists, otherwise the number
// of the example
exampleName = pData->getExampleName(i);
if ( !exampleName.empty() )
outFile << exampleName << ',';
// output the posteriors
outFile << results[i]->getVotesVector()[0];
for (int l = 1; l < numClasses; ++l)
outFile << ',' << results[i]->getVotesVector()[l];
outFile << '\n';
}
if (_verbose > 0)
cout << "Done!" << endl;
if (_verbose > 1)
{
cout << "\nClass order (You can change it in the header of the data file):" << endl;
for (int l = 0; l < numClasses; ++l)
cout << "- " << pData->getClassMap().getNameFromIdx(l) << endl;
}
// delete the input data file
if (pData)
delete pData;
vector<ExampleResults*>::iterator it;
for (it = results.begin(); it != results.end(); ++it)
delete (*it);
}
示例8: saveConfusionMatrix
void MDDAGClassifier::saveConfusionMatrix(const string& dataFileName, const string& shypFileName,
const string& outFileName)
{
InputData* pData = loadInputData(dataFileName, shypFileName);
if (_verbose > 0)
cout << "Loading strong hypothesis..." << flush;
// The class that loads the weak hypotheses
UnSerialization us;
// Where to put the weak hypotheses
vector<BaseLearner*> weakHypotheses;
// loads them
us.loadHypotheses(shypFileName, weakHypotheses, pData);
// where the results go
vector< ExampleResults* > results;
if (_verbose > 0)
cout << "Classifying..." << flush;
// get the results
computeResults( pData, weakHypotheses, results, (int)weakHypotheses.size() );
const int numClasses = pData->getNumClasses();
const int numExamples = pData->getNumExamples();
ofstream outFile(outFileName.c_str());
//////////////////////////////////////////////////////////////////////////
for (int l = 0; l < numClasses; ++l)
outFile << '\t' << pData->getClassMap().getNameFromIdx(l);
outFile << endl;
for (int l = 0; l < numClasses; ++l)
{
vector<int> winnerCount(numClasses, 0);
for (int i = 0; i < numExamples; ++i)
{
if ( pData->hasPositiveLabel(i,l) )
++winnerCount[ results[i]->getWinner().first ];
}
// class name
outFile << pData->getClassMap().getNameFromIdx(l);
for (int j = 0; j < numClasses; ++j)
outFile << '\t' << winnerCount[j];
outFile << endl;
}
//////////////////////////////////////////////////////////////////////////
if (_verbose > 0)
cout << "Done!" << endl;
// delete the input data file
if (pData)
delete pData;
vector<ExampleResults*>::iterator it;
for (it = results.begin(); it != results.end(); ++it)
delete (*it);
}
示例9: printConfusionMatrix
void MDDAGClassifier::printConfusionMatrix(const string& dataFileName, const string& shypFileName)
{
InputData* pData = loadInputData(dataFileName, shypFileName);
if (_verbose > 0)
cout << "Loading strong hypothesis..." << flush;
// The class that loads the weak hypotheses
UnSerialization us;
// Where to put the weak hypotheses
vector<BaseLearner*> weakHypotheses;
// loads them
us.loadHypotheses(shypFileName, weakHypotheses, pData);
// where the results go
vector< ExampleResults* > results;
if (_verbose > 0)
cout << "Classifying..." << flush;
// get the results
computeResults( pData, weakHypotheses, results, (int)weakHypotheses.size());
const int numClasses = pData->getNumClasses();
const int numExamples = pData->getNumExamples();
if (_verbose > 0)
cout << "Done!" << endl;
const int colSize = 7;
if (_verbose > 0)
{
cout << "Raw Confusion Matrix:\n";
cout << setw(colSize) << "Truth ";
for (int l = 0; l < numClasses; ++l)
cout << setw(colSize) << nor_utils::getAlphanumeric(l);
cout << "\nClassification\n";
for (int l = 0; l < numClasses; ++l)
{
vector<int> winnerCount(numClasses, 0);
for (int i = 0; i < numExamples; ++i)
{
if ( pData->hasPositiveLabel(i, l) )
++winnerCount[ results[i]->getWinner().first ];
}
// class
cout << setw(colSize) << " " << nor_utils::getAlphanumeric(l);
for (int j = 0; j < numClasses; ++j)
cout << setw(colSize) << winnerCount[j];
cout << endl;
}
}
cout << "\nMatrix Key:\n";
// Print the legend
for (int l = 0; l < numClasses; ++l)
cout << setw(5) << nor_utils::getAlphanumeric(l) << ": " <<
pData->getClassMap().getNameFromIdx(l) << "\n";
// delete the input data file
if (pData)
delete pData;
vector<ExampleResults*>::iterator it;
for (it = results.begin(); it != results.end(); ++it)
delete (*it);
}
示例10: saveROC
void AdaBoostMHClassifier::saveROC(const string& dataFileName, const string& shypFileName,
const string& outFileName, int numIterations)
{
InputData* pData = loadInputData(dataFileName, shypFileName);
ofstream outFile(outFileName.c_str());
if ( ! outFile.is_open() )
{
cout << "Cannot open outfile" << endl;
exit( -1 );
}
if (_verbose > 0)
cout << "Loading strong hypothesis..." << flush;
// The class that loads the weak hypotheses
UnSerialization us;
// Where to put the weak hypotheses
vector<BaseLearner*> weakHypotheses;
// loads them
us.loadHypotheses(shypFileName, weakHypotheses, pData);
weakHypotheses.resize( numIterations );
// where the results go
vector< ExampleResults* > results;
if (_verbose > 0)
cout << "Classifying..." << flush;
// get the results
computeResults( pData, weakHypotheses, results, weakHypotheses.size());
const int numClasses = pData->getNumClasses();
const int numExamples = pData->getNumExamples();
if (_verbose > 0)
cout << "Done!" << endl;
vector< pair< int, double> > sortedExample( numExamples );
for( int i=0; i<numExamples; i++ )
{
sortedExample[i].first = i;
sortedExample[i].second = results[i]->getVotesVector()[0];
}
sort( sortedExample.begin(), sortedExample.end(), nor_utils::comparePair< 2, int, double, greater<double> >() );
vector<double> positiveWeights( numExamples );
double sumOfPositiveWeights = 0.0;
vector<double> negativeWeights( numExamples );
double sumOfNegativeWeights = 0.0;
fill( positiveWeights.begin(), positiveWeights.end(), 0.0 );
fill( negativeWeights.begin(), negativeWeights.end(), 0.0 );
string className = pData->getClassMap().getNameFromIdx( 0 );
vector<Label>& labels = pData->getLabels( sortedExample[0].first );
vector<Label>::iterator labIt = find( labels.begin(), labels.end(), 0);
if ( labIt != labels.end() )
{
if ( labIt->y > 0.0 )
{
positiveWeights[0] = labIt->initialWeight;
sumOfPositiveWeights += labIt->initialWeight;
} else
{
negativeWeights[0] = labIt->initialWeight;
sumOfNegativeWeights += labIt->initialWeight;
}
}
for( int i=1; i<numExamples; i++ )
{
labels = pData->getLabels( sortedExample[i].first );
labIt = find( labels.begin(), labels.end(), 0);
if ( labIt != labels.end() )
{
if ( labIt->y > 0.0 )
{
negativeWeights[i] = negativeWeights[i-1];
positiveWeights[i] = positiveWeights[i-1] + labIt->initialWeight;
sumOfPositiveWeights += labIt->initialWeight;
} else
{
positiveWeights[i] = positiveWeights[i-1];
negativeWeights[i] = negativeWeights[i-1] + labIt->initialWeight;
sumOfNegativeWeights += labIt->initialWeight;
}
} else {
positiveWeights[i] = positiveWeights[i-1];
negativeWeights[i] = negativeWeights[i-1];
}
}
outFile << "Class name: " << className << endl;
//.........这里部分代码省略.........
示例11: run
float ParasiteLearner::run()
{
if (_baseLearners.size() == 0) {
// load the base learners
if (_verbose >= 2)
cout << "loading " << _nameBaseLearnerFile << ".." << flush;
UnSerialization us;
us.loadHypotheses( _nameBaseLearnerFile, _baseLearners, _pTrainingData, _verbose);
if (_verbose >= 2)
cout << "finished " << endl << flush;
}
if ( _numBaseLearners == -1 || _numBaseLearners > _baseLearners.size())
_numBaseLearners = _baseLearners.size();
const int numClasses = _pTrainingData->getNumClasses();
const int numExamples = _pTrainingData->getNumExamples();
float tmpAlpha;
float bestE = numeric_limits<float>::max();
float sumGamma, bestSumGamma = -numeric_limits<float>::max();
float tmpE, gamma;
float eps_min,eps_pls;
int tmpSignOfAlpha;
// This is the bottleneck, squeeze out every microsecond
if (_closed) {
bestSumGamma = 0;
if ( nor_utils::is_zero(_theta) ) {
for (int j = 0; j < _numBaseLearners; ++j) {
sumGamma = 0;
for (int i = 0; i < numExamples; ++i) {
vector<Label> labels = _pTrainingData->getLabels(i);
for (int l = 0; l < numClasses; ++l)
sumGamma += labels[l].weight *
_baseLearners[j]->classify(_pTrainingData,i,l) * labels[l].y;
}
if (fabs(sumGamma) > fabs(bestSumGamma)) {
_selectedIdx = j;
bestSumGamma = sumGamma;
}
}
eps_pls = eps_min = 0;
for (int i = 0; i < numExamples; ++i) {
vector<Label> labels = _pTrainingData->getLabels(i);
for (int l = 0; l < numClasses; ++l) {
gamma = _baseLearners[_selectedIdx]->classify(_pTrainingData,i,l) *
labels[l].y;
if ( gamma > 0 )
eps_pls += labels[l].weight;
else if ( gamma < 0 )
eps_min += labels[l].weight;
}
}
if (eps_min > eps_pls) {
float tmpSwap = eps_min;
eps_min = eps_pls;
eps_pls = tmpSwap;
_signOfAlpha = -1;
}
_alpha = getAlpha(eps_min, eps_pls);
bestE = BaseLearner::getEnergy( eps_min, eps_pls );
}
else {
for (int j = 0; j < _numBaseLearners; ++j) {
eps_pls = eps_min = 0;
for (int i = 0; i < numExamples; ++i) {
vector<Label> labels = _pTrainingData->getLabels(i);
for (int l = 0; l < numClasses; ++l) {
gamma = _baseLearners[j]->classify(_pTrainingData,i,l) * labels[l].y;
if ( gamma > 0 )
eps_pls += labels[l].weight;
else if ( gamma < 0 )
eps_min += labels[l].weight;
}
}
if (eps_min > eps_pls) {
float tmpSwap = eps_min;
eps_min = eps_pls;
eps_pls = tmpSwap;
tmpSignOfAlpha = -1;
}
else
tmpSignOfAlpha = 1;
tmpAlpha = getAlpha(eps_min, eps_pls, _theta);
tmpE = BaseLearner::getEnergy( eps_min, eps_pls, tmpAlpha, _theta );
if (tmpE < bestE && eps_pls > eps_min + _theta) {
_alpha = tmpAlpha;
_selectedIdx = j;
_signOfAlpha = tmpSignOfAlpha;
bestE = tmpE;
}
}
}
}
else {
if ( nor_utils::is_zero(_theta) ) {
for (int j = 0; j < _numBaseLearners; ++j) {
sumGamma = 0;
for (int i = 0; i < numExamples; ++i) {
//.........这里部分代码省略.........
示例12: run
//.........这里部分代码省略.........
// FIXME: output posteriors
// OutputInfo* pTrainPosteriorsOut = NULL;
// OutputInfo* pTestPosteriorsOut = NULL;
// if (! _trainPosteriorsFileName.empty()) {
// pTrainPosteriorsOut = new OutputInfo(_trainPosteriorsFileName, "pos", true);
// pTrainPosteriorsOut->initialize(pTrainingData);
// dynamic_cast<PosteriorsOutput*>( pTrainPosteriorsOut->getOutputInfoObject("pos") )->addClassIndex(_positiveLabelIndex );
// }
// if (! _testPosteriorsFileName.empty() && !_testFileName.empty() ) {
// pTestPosteriorsOut = new OutputInfo(_testPosteriorsFileName, "pos", true);
// pTestPosteriorsOut->initialize(pTestData);
// dynamic_cast<PosteriorsOutput*>( pTestPosteriorsOut->getOutputInfoObject("pos") )->addClassIndex(_positiveLabelIndex );
// }
const int numExamples = pTrainingData->getNumExamples();
vector<BaseLearner*> inWeakHypotheses;
if (_fullRun) {
// TODO : the full training is implementet, testing is needed
AdaBoostMHLearner* sHypothesis = new AdaBoostMHLearner();
sHypothesis->run(args, pTrainingData, _baseLearnerName, _numIterations, inWeakHypotheses );
delete sHypothesis;
}
else {
cout << "[+] Loading uncalibrated shyp file... ";
//read the shyp file of the trained classifier
UnSerialization us;
us.loadHypotheses(_unCalibratedShypFileName, inWeakHypotheses, pTrainingData);
if (_inShypLimit > 0 && _inShypLimit < inWeakHypotheses.size() ) {
inWeakHypotheses.resize(_inShypLimit);
}
if (_numIterations > inWeakHypotheses.size()) {
_numIterations = inWeakHypotheses.size();
}
cout << "weak hypotheses loaded, " << inWeakHypotheses.size() << " retained.\n";
}
// some initializations
_foundHypotheses.resize(0);
double faceRejectionFraction = 0.;
double estimatedExecutionTime = 0.;
vector<double> rejectionDistributionVector;
_rejectionThresholds.resize(0);
set<int> trainingIndices;
for (int i = 0; i < numExamples; i++) {
trainingIndices.insert(pTrainingData->getRawIndex(i) );
}
// init v_t (see the paper)
initializeRejectionDistributionVector(_numIterations, rejectionDistributionVector);
if (_verbose == 1)
cout << "Learning in progress..." << endl;
///////////////////////////////////////////////////////////////////////
// Starting the SoftCascade main loop
///////////////////////////////////////////////////////////////////////