本文整理汇总了C++中Tuple::clear方法的典型用法代码示例。如果您正苦于以下问题:C++ Tuple::clear方法的具体用法?C++ Tuple::clear怎么用?C++ Tuple::clear使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Tuple
的用法示例。
在下文中一共展示了Tuple::clear方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: project
Relation Relation::project(vector<int>& index1)
{
Relation temp;
Tuple tempTuplele;
for(int i=0; i<index1.size(); i++)
{
temp.my_values.ADD(my_values.scheme_string(index1[i]));
}
for (set<Tuple>::iterator it = Tuple_Set.begin(); it != Tuple_Set.end(); ++it)
{
for(int i = 0; i < index1.size(); i++)
{
tempTuplele.push_back((*it)[index1[i]]);
}
temp.Tuple_Set.insert(tempTuplele);
tempTuplele.clear();
}
temp.my_name = my_name;
return temp;
}
示例2: project
void Relation::project(map<int, string>& variables)
{
set<Tuple> newTuples;
Scheme newScheme;
Tuple t;
for (auto& v : variables){
newScheme.addAttribute(scheme.getAttributes().at(v.first));
}
for (auto& tup : tuples){
for (auto& v : variables)
{
t.addAttValue(tup.at(v.first));
}
if (variables.size() > 0){
newTuples.insert(t);
t.clear();
}
}
tuples = newTuples;
scheme = newScheme;
setName("project");
}
示例3: reallocate
template<class T> void Tuple<T>::join(Tuple<T>& t) {
int old_sz = sz;
reallocate(t.size()+size());
assert(alloc_sz >= sz);
for(int i=0; i<t.sz; i++)
data[i+old_sz] = t.data[i];
t.clear();
}
示例4: parseFacts
void Database::parseFacts()
{
Tuple tup;
for (int i = 0; i < Facts.size(); i++){
if (relations.count(Facts[i].getData())){
setTupleAttributeValues(tup, i);
relations[Facts[i].getData()].addTuple(tup);
tup.clear();
}
}
}
示例5: execProject
void Join::execProject(const Tuple &left_tuple,
const Tuple &right_tuple,
Tuple &output_tuple) const
{
output_tuple.clear();
for (ColID i = 0; i < numOutputCols(); ++i) {
if (selected_input_col_ids_[i] < left_child_->numOutputCols()) {
output_tuple.push_back(left_tuple[selected_input_col_ids_[i]]);
} else {
output_tuple.push_back(right_tuple[selected_input_col_ids_[i]
- left_child_->numOutputCols()]);
}
}
}
示例6: PluginError
//.........这里部分代码省略.........
//check number and type of arguments
if (parms.size()!= 2)
{
throw PluginError("Wrong number of arguments");
}
else
{
if(parms[0].isSymbol() && parms[1].isSymbol())
{
matrixPred = parms[0].getString();
//std::cout << "Matrixpraedikat: " << matrixPred << std::endl;
constantPred = parms[1].getString();
//std::cout << "Vektorpraedikat: " << vectorPred << std::endl;
}
else
{
throw PluginError("Wrong type of arguments");
}
}
//get complete Interpretation of given predicates in query
AtomSet totalInt = query.getInterpretation();
AtomSet matrixInt;
AtomSet constantInt;
if (totalInt.empty())
{
throw PluginError("Could not find any interpretion");
}
else
{
// separate interpretation into facts of first predicate (matrix)
totalInt.matchPredicate(matrixPred, matrixInt);
// and into facts of second predicate (vector)
totalInt.matchPredicate(constantPred, constantInt);
}
int mRows = 0;
int mColumns = 0;
int cRows = 0;
int cColumns = 0;
evaluateMatrix(matrixInt, mRows, mColumns);
evaluateVector(constantInt, cRows, cColumns);
if(mRows != cRows) throw PluginError("Coefficient matrix and target vector(s) or matrix do not have the same dimensions.");
std::vector <std::vector <std::string> > matrix(mRows);
for(int i = 0; i < mRows; i++)
matrix[i].resize(mColumns);
std::vector <std::vector <std::string> > constants(cRows);
for (int i = 0; i < cRows; i++)
constants[i].resize(cColumns);
//write the values of the Atoms in the Interpretation into std::vectors for further processing
convertMatrixToVector(matrixInt, mRows, mColumns, matrix);
convertMatrixToVector(constantInt, cRows, cColumns, constants);
//check if matrix and target vector or matrix are fully defined
checkVector(matrix, mRows, mColumns, matrixPred);
checkVector(constants, cRows, cColumns, constantPred);
//convert matrix to MatrixRank-expression and calculate rank of coefficient matrix A
std::string coeffMRankExpr = toMatrixRankExpr(matrix, mRows, mColumns);
//std::cout << "MatrixRank expression: " << coeffMRankExpr << std::endl;
int coeffMRank = calculateRank(argc, argv, coeffMRankExpr);
//convert matrix A and target b to MatrixRank-expression and calculate rank
//of extended coefficient matrix [A,b]
std::string extendedMRankExpr = toMatrixRankExpr(matrix, mRows, mColumns, constants, cRows, cColumns);
//std::cout << "Extended MatrixRank expression: " << extendedMRankExpr << std::endl;
int extCoeffMRank = calculateRank(argc, argv, extendedMRankExpr);
//compare calculated ranks and number of matrix colums, iff they are equal,
//a unique solution for the matrix equation exists
if ((coeffMRank == extCoeffMRank) && (coeffMRank == mColumns))
{
std::string linSolExpr = toLinearSolveExpr(matrix, mRows, mColumns, constants, cRows, cColumns);
std::vector <std::string> result;
result = calculateSolution(argc, argv, linSolExpr);
if(result.size() != mColumns*cColumns)
throw PluginError("Wrong number of arguments in result vector");
Tuple out;
int index = 0;
//fill the result values with correct indices into Tuple out
//and add all Tuples to Answer
for (int r = 1; r <= mColumns; r++)
{
for(int c = 1; c<= cColumns; c++)
{
out.push_back(Term(r));
out.push_back(Term(c));
out.push_back(Term(result[index],true));
answer.addTuple(out);
out.clear();
index++;
}
}
}
}