本文整理汇总了C++中TreeType::Descendant方法的典型用法代码示例。如果您正苦于以下问题:C++ TreeType::Descendant方法的具体用法?C++ TreeType::Descendant怎么用?C++ TreeType::Descendant使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TreeType
的用法示例。
在下文中一共展示了TreeType::Descendant方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
void RangeSearchRules<MetricType, TreeType>::AddResult(const size_t queryIndex,
TreeType& referenceNode)
{
// Some types of trees calculate the base case evaluation before Score() is
// called, so if the base case has already been calculated, then we must avoid
// adding that point to the results again.
size_t baseCaseMod = 0;
if (tree::TreeTraits<TreeType>::FirstPointIsCentroid &&
(queryIndex == lastQueryIndex) &&
(referenceNode.Point(0) == lastReferenceIndex))
{
baseCaseMod = 1;
}
// Resize distances and neighbors vectors appropriately. We have to use
// reserve() and not resize(), because we don't know if we will encounter the
// case where the datasets and points are the same (and we skip in that case).
const size_t oldSize = neighbors[queryIndex].size();
neighbors[queryIndex].reserve(oldSize + referenceNode.NumDescendants() -
baseCaseMod);
distances[queryIndex].reserve(oldSize + referenceNode.NumDescendants() -
baseCaseMod);
for (size_t i = baseCaseMod; i < referenceNode.NumDescendants(); ++i)
{
if ((&referenceSet == &querySet) &&
(queryIndex == referenceNode.Descendant(i)))
continue;
const double distance = metric.Evaluate(querySet.unsafe_col(queryIndex),
referenceNode.Dataset().unsafe_col(referenceNode.Descendant(i)));
neighbors[queryIndex].push_back(referenceNode.Descendant(i));
distances[queryIndex].push_back(distance);
}
}
示例2: CheckBound
void CheckBound(const TreeType& tree)
{
typedef typename TreeType::ElemType ElemType;
for (size_t i = 0; i < tree.NumDescendants(); i++)
{
arma::Col<ElemType> point = tree.Dataset().col(tree.Descendant(i));
// Check that the point is contained in the bound.
BOOST_REQUIRE_EQUAL(true, tree.Bound().Contains(point));
const arma::Mat<ElemType>& loBound = tree.Bound().LoBound();
const arma::Mat<ElemType>& hiBound = tree.Bound().HiBound();
// Ensure that there is a hyperrectangle that contains the point.
bool success = false;
for (size_t j = 0; j < tree.Bound().NumBounds(); j++)
{
success = true;
for (size_t k = 0; k < loBound.n_rows; k++)
{
if (point[k] < loBound(k, j) - 1e-14 * std::fabs(loBound(k, j)) ||
point[k] > hiBound(k, j) + 1e-14 * std::fabs(hiBound(k, j)))
{
success = false;
break;
}
}
if (success)
break;
}
BOOST_REQUIRE_EQUAL(success, true);
}
if (!tree.IsLeaf())
{
CheckBound(*tree.Left());
CheckBound(*tree.Right());
}
}
示例3: Traverse
void GreedySingleTreeTraverser<TreeType, RuleType>::Traverse(
const size_t queryIndex,
TreeType& referenceNode)
{
// Run the base case as necessary for all the points in the reference node.
for (size_t i = 0; i < referenceNode.NumPoints(); ++i)
rule.BaseCase(queryIndex, referenceNode.Point(i));
size_t bestChild = rule.GetBestChild(queryIndex, referenceNode);
size_t numDescendants;
// Check that referencenode is not a leaf node while calculating number of
// descendants of it's best child.
if (!referenceNode.IsLeaf())
numDescendants = referenceNode.Child(bestChild).NumDescendants();
else
numDescendants = referenceNode.NumPoints();
// If number of descendants are more than minBaseCases than we can go along
// with best child otherwise we need to traverse for each descendant to
// ensure that we calculate at least minBaseCases number of base cases.
if (!referenceNode.IsLeaf())
{
if (numDescendants > minBaseCases)
{
// We are prunning all but one child.
numPrunes += referenceNode.NumChildren() - 1;
// Recurse the best child.
Traverse(queryIndex, referenceNode.Child(bestChild));
}
else
{
// Run the base case over first minBaseCases number of descendants.
for (size_t i = 0; i <= minBaseCases; ++i)
rule.BaseCase(queryIndex, referenceNode.Descendant(i));
}
}
}
示例4: EvaluateKernel
inline double KDERules<MetricType, KernelType, TreeType>::
Score(TreeType& queryNode, TreeType& referenceNode)
{
double score, maxKernel, minKernel, bound;
const double minDistance = queryNode.MinDistance(referenceNode);
// Calculations are not duplicated.
bool newCalculations = true;
if (tree::TreeTraits<TreeType>::FirstPointIsCentroid &&
(traversalInfo.LastQueryNode() != NULL) &&
(traversalInfo.LastReferenceNode() != NULL) &&
(traversalInfo.LastQueryNode()->Point(0) == queryNode.Point(0)) &&
(traversalInfo.LastReferenceNode()->Point(0) == referenceNode.Point(0)))
{
// Don't duplicate calculations.
newCalculations = false;
lastQueryIndex = queryNode.Point(0);
lastReferenceIndex = referenceNode.Point(0);
}
else
{
// Calculations are new.
maxKernel = kernel.Evaluate(minDistance);
minKernel = kernel.Evaluate(queryNode.MaxDistance(referenceNode));
bound = maxKernel - minKernel;
}
// If possible, avoid some calculations because of the error tolerance.
if (newCalculations &&
bound <= (absError + relError * minKernel) / referenceSet.n_cols)
{
// Auxiliary variables.
double kernelValue;
kde::KDEStat& referenceStat = referenceNode.Stat();
kde::KDEStat& queryStat = queryNode.Stat();
// If calculating a center is not required.
if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
{
kernelValue = EvaluateKernel(queryNode.Point(0), referenceNode.Point(0));
}
// Sadly, we have no choice but to calculate the center.
else
{
kernelValue = EvaluateKernel(queryStat.Centroid(),
referenceStat.Centroid());
}
// Sum up estimations.
for (size_t i = 0; i < queryNode.NumDescendants(); ++i)
{
densities(queryNode.Descendant(i)) +=
referenceNode.NumDescendants() * kernelValue;
}
score = DBL_MAX;
}
else
{
score = minDistance;
}
++scores;
traversalInfo.LastQueryNode() = &queryNode;
traversalInfo.LastReferenceNode() = &referenceNode;
traversalInfo.LastScore() = score;
return score;
}
示例5: CheckDistance
void CheckDistance(TreeType& tree, TreeType* node = NULL)
{
typedef typename TreeType::ElemType ElemType;
if (node == NULL)
{
node = &tree;
while (node->Parent() != NULL)
node = node->Parent();
CheckDistance<TreeType, MetricType>(tree, node);
for (size_t j = 0; j < tree.Dataset().n_cols; j++)
{
const arma::Col<ElemType>& point = tree. Dataset().col(j);
ElemType maxDist = 0;
ElemType minDist = std::numeric_limits<ElemType>::max();
for (size_t i = 0; i < tree.NumDescendants(); i++)
{
ElemType dist = MetricType::Evaluate(
tree.Dataset().col(tree.Descendant(i)),
tree.Dataset().col(j));
if (dist > maxDist)
maxDist = dist;
if (dist < minDist)
minDist = dist;
}
BOOST_REQUIRE_LE(tree.Bound().MinDistance(point), minDist *
(1.0 + 10 * std::numeric_limits<ElemType>::epsilon()));
BOOST_REQUIRE_LE(maxDist, tree.Bound().MaxDistance(point) *
(1.0 + 10 * std::numeric_limits<ElemType>::epsilon()));
math::RangeType<ElemType> r = tree.Bound().RangeDistance(point);
BOOST_REQUIRE_LE(r.Lo(), minDist *
(1.0 + 10 * std::numeric_limits<ElemType>::epsilon()));
BOOST_REQUIRE_LE(maxDist, r.Hi() *
(1.0 + 10 * std::numeric_limits<ElemType>::epsilon()));
}
if (!tree.IsLeaf())
{
CheckDistance<TreeType, MetricType>(*tree.Left());
CheckDistance<TreeType, MetricType>(*tree.Right());
}
}
else
{
if (&tree != node)
{
ElemType maxDist = 0;
ElemType minDist = std::numeric_limits<ElemType>::max();
for (size_t i = 0; i < tree.NumDescendants(); i++)
for (size_t j = 0; j < node->NumDescendants(); j++)
{
ElemType dist = MetricType::Evaluate(
tree.Dataset().col(tree.Descendant(i)),
node->Dataset().col(node->Descendant(j)));
if (dist > maxDist)
maxDist = dist;
if (dist < minDist)
minDist = dist;
}
BOOST_REQUIRE_LE(tree.Bound().MinDistance(node->Bound()), minDist *
(1.0 + 10 * std::numeric_limits<ElemType>::epsilon()));
BOOST_REQUIRE_LE(maxDist, tree.Bound().MaxDistance(node->Bound()) *
(1.0 + 10 * std::numeric_limits<ElemType>::epsilon()));
math::RangeType<ElemType> r = tree.Bound().RangeDistance(node->Bound());
BOOST_REQUIRE_LE(r.Lo(), minDist *
(1.0 + 10 * std::numeric_limits<ElemType>::epsilon()));
BOOST_REQUIRE_LE(maxDist, r.Hi() *
(1.0 + 10 * std::numeric_limits<ElemType>::epsilon()));
}
if (!node->IsLeaf())
{
CheckDistance<TreeType, MetricType>(tree, node->Left());
CheckDistance<TreeType, MetricType>(tree, node->Right());
}
}
}
示例6: BaseCase
double RangeSearchRules<MetricType, TreeType>::Score(TreeType& queryNode,
TreeType& referenceNode)
{
math::Range distances;
if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
{
// It is possible that the base case has already been calculated.
double baseCase = 0.0;
bool alreadyDone = false;
if (tree::TreeTraits<TreeType>::HasSelfChildren)
{
TreeType* lastQuery = (TreeType*) referenceNode.Stat().LastDistanceNode();
TreeType* lastRef = (TreeType*) queryNode.Stat().LastDistanceNode();
// Did the query node's last combination do the base case?
if ((lastRef != NULL) && (referenceNode.Point(0) == lastRef->Point(0)))
{
baseCase = queryNode.Stat().LastDistance();
alreadyDone = true;
}
// Did the reference node's last combination do the base case?
if ((lastQuery != NULL) && (queryNode.Point(0) == lastQuery->Point(0)))
{
baseCase = referenceNode.Stat().LastDistance();
alreadyDone = true;
}
// If the query node is a self-child, did the query parent's last
// combination do the base case?
if ((queryNode.Parent() != NULL) &&
(queryNode.Point(0) == queryNode.Parent()->Point(0)))
{
TreeType* lastParentRef = (TreeType*)
queryNode.Parent()->Stat().LastDistanceNode();
if ((lastParentRef != NULL) &&
(referenceNode.Point(0) == lastParentRef->Point(0)))
{
baseCase = queryNode.Parent()->Stat().LastDistance();
alreadyDone = true;
}
}
// If the reference node is a self-child, did the reference parent's last
// combination do the base case?
if ((referenceNode.Parent() != NULL) &&
(referenceNode.Point(0) == referenceNode.Parent()->Point(0)))
{
TreeType* lastQueryRef = (TreeType*)
referenceNode.Parent()->Stat().LastDistanceNode();
if ((lastQueryRef != NULL) &&
(queryNode.Point(0) == lastQueryRef->Point(0)))
{
baseCase = referenceNode.Parent()->Stat().LastDistance();
alreadyDone = true;
}
}
}
if (!alreadyDone)
{
// We must calculate the base case.
baseCase = BaseCase(queryNode.Point(0), referenceNode.Point(0));
}
else
{
// Make sure that if BaseCase() is called, we don't duplicate results.
lastQueryIndex = queryNode.Point(0);
lastReferenceIndex = referenceNode.Point(0);
}
distances.Lo() = baseCase - queryNode.FurthestDescendantDistance()
- referenceNode.FurthestDescendantDistance();
distances.Hi() = baseCase + queryNode.FurthestDescendantDistance()
+ referenceNode.FurthestDescendantDistance();
// Update the last distances performed for the query and reference node.
queryNode.Stat().LastDistanceNode() = (void*) &referenceNode;
queryNode.Stat().LastDistance() = baseCase;
referenceNode.Stat().LastDistanceNode() = (void*) &queryNode;
referenceNode.Stat().LastDistance() = baseCase;
}
else
{
// Just perform the calculation.
distances = referenceNode.RangeDistance(&queryNode);
}
// If the ranges do not overlap, prune this node.
if (!distances.Contains(range))
return DBL_MAX;
// In this case, all of the points in the reference node will be part of all
// the results for each point in the query node.
if ((distances.Lo() >= range.Lo()) && (distances.Hi() <= range.Hi()))
{
for (size_t i = 0; i < queryNode.NumDescendants(); ++i)
AddResult(queryNode.Descendant(i), referenceNode);
return DBL_MAX; // We don't need to go any deeper.
}
//.........这里部分代码省略.........