本文整理汇总了C++中Trace::empty方法的典型用法代码示例。如果您正苦于以下问题:C++ Trace::empty方法的具体用法?C++ Trace::empty怎么用?C++ Trace::empty使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Trace
的用法示例。
在下文中一共展示了Trace::empty方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Analyze
void FittingAnalyzer::Analyze(Trace &trace, const std::string &detType,
const std::string &detSubtype,
const std::map<std::string, int> & tagMap) {
TraceAnalyzer::Analyze(trace, detType, detSubtype, tagMap);
if(trace.HasValue("saturation") || trace.empty() ||
trace.GetWaveform().size() == 0) {
EndAnalyze();
return;
}
Globals *globals = Globals::get();
const double sigmaBaseline = trace.GetValue("sigmaBaseline");
const double maxVal = trace.GetValue("maxval");
const double qdc = trace.GetValue("qdc");
const double maxPos = trace.GetValue("maxpos");
const vector<double> waveform = trace.GetWaveform();
bool isDblBeta = detType == "beta" && detSubtype == "double";
bool isDblBetaT = isDblBeta && tagMap.find("timing") != tagMap.end();
trace.plot(D_SIGMA, sigmaBaseline*100);
if(!isDblBetaT) {
if(sigmaBaseline > globals->sigmaBaselineThresh()) {
EndAnalyze();
return;
}
} else {
if(sigmaBaseline > globals->siPmtSigmaBaselineThresh()) {
EndAnalyze();
return;
}
}
pair<double,double> pars = globals->fitPars(detType+":"+detSubtype);
if(isDblBetaT)
pars = globals->fitPars(detType+":"+detSubtype+":timing");
FitDriver *driver;
switch(fitterType_) {
case FitDriver::GSL:
driver = new GslFitter(isDblBetaT);
break;
case FitDriver::UNKNOWN:
default:
EndAnalyze();
return;
}
driver->PerformFit(waveform, pars, sigmaBaseline, qdc);
trace.InsertValue("phase", driver->GetPhase()+maxPos);
trace.plot(DD_AMP, driver->GetAmplitude(), maxVal);
trace.plot(D_PHASE, driver->GetPhase()*1000+100);
trace.plot(D_CHISQPERDOF, driver->GetChiSqPerDof());
delete(driver);
EndAnalyze();
}
示例2: Analyze
void WaveformAnalyzer::Analyze(Trace &trace, const ChannelConfiguration &cfg) {
TraceAnalyzer::Analyze(trace, cfg);
if (trace.IsSaturated() || trace.empty() || ignoredTypes_.find(cfg.GetType()) != ignoredTypes_.end()) {
trace.SetHasValidAnalysis(false);
EndAnalyze();
return;
}
pair<unsigned int, unsigned int> range = cfg.GetWaveformBoundsInSamples();
//First we calculate the position of the maximum.
pair<unsigned int, double> max;
try {
max = TraceFunctions::FindMaximum(trace, cfg.GetTraceDelayInSamples());
} catch (range_error &ex) {
trace.SetHasValidAnalysis(false);
cout << "WaveformAnalyzer::Analyze - " << ex.what() << endl;
EndAnalyze();
return;
}
//If the position of the maximum doesn't give us enough bins on the
// baseline to calculate the average baseline then we're going to set
// some of the variables to be used later to zero and end the analysis of
// the waveform now.
if (max.first - range.first < TraceFunctions::minimum_baseline_length) {
#ifdef VERBOSE
cout << "WaveformAnalyzer::Analyze - The low bound for the trace overlaps with the minimum bins for the"
"baseline." << endl;
#endif
trace.SetHasValidAnalysis(false);
EndAnalyze();
return;
}
try {
//Next we calculate the baseline and its standard deviation
pair<double, double> baseline = TraceFunctions::CalculateBaseline(trace, make_pair(0, max.first - range.first));
//For well behaved traces the standard deviation of the baseline
// shouldn't ever be more than 1-3 ADC units. However, for traces
// that are not captured properly, we can get really crazy values
// here the SiPM often saw values as high as 20. We will put in a
// hard limit of 50 as a cutoff since anything with a standard
// deviation of this high will never be something we want to analyze.
static const double extremeBaselineVariation = 50;
if (baseline.second >= extremeBaselineVariation) {
trace.SetHasValidAnalysis(false);
EndAnalyze();
return;
}
//Subtract the baseline from the maximum value.
max.second -= baseline.first;
vector<double> traceNoBaseline;
for (unsigned int i = 0; i < trace.size(); i++)
traceNoBaseline.push_back(trace[i] - baseline.first);
//Finally, we calculate the QDC in the waveform range and subtract
// the baseline from it.
pair<unsigned int, unsigned int> waveformRange(max.first - range.first, max.first + range.second);
double qdc = TraceFunctions::CalculateQdc(traceNoBaseline, waveformRange);
//Now we are going to set all the different values into the trace.
trace.SetQdc(qdc);
trace.SetBaseline(baseline);
trace.SetMax(max);
trace.SetExtrapolatedMax(make_pair(max.first,
TraceFunctions::ExtrapolateMaximum(trace, max).first - baseline.first));
trace.SetTraceSansBaseline(traceNoBaseline);
trace.SetWaveformRange(waveformRange);
trace.SetHasValidAnalysis(true);
} catch (range_error &ex) {
trace.SetHasValidAnalysis(false);
cout << "WaveformAnalyzer::Analyze - " << ex.what() << endl;
EndAnalyze();
return;
}
}