当前位置: 首页>>代码示例>>C++>>正文


C++ Tr::number_of_vertices方法代码示例

本文整理汇总了C++中Tr::number_of_vertices方法的典型用法代码示例。如果您正苦于以下问题:C++ Tr::number_of_vertices方法的具体用法?C++ Tr::number_of_vertices怎么用?C++ Tr::number_of_vertices使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Tr的用法示例。


在下文中一共展示了Tr::number_of_vertices方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main() {
  Tr tr;            // 3D-Delaunay triangulation
  C2t3 c2t3 (tr);   // 2D-complex in 3D-Delaunay triangulation

  // defining the surface
  Surface_3 surface(moebius_function,             // pointer to function
                    Sphere_3(Point_3(0.0001, -0.0003, 0.), 2.)); // bounding sphere

  // defining meshing criteria
  CGAL::Surface_mesh_default_criteria_3<Tr> criteria(30.,  // angular bound
                                                     0.05,  // radius bound
                                                     0.05); // distance bound
  // meshing surface
  CGAL::make_surface_mesh(c2t3, surface, criteria, CGAL::Non_manifold_tag());

  std::ofstream out("out.off");

#ifndef NDEBUG
  const bool result = 
#endif
    CGAL::output_surface_facets_to_off(out, c2t3,
				       CGAL::Surface_mesher::IO_VERBOSE | 
				       CGAL::Surface_mesher::IO_ORIENT_SURFACE);

  assert(result == false);

  std::cout << "Final number of points: " << tr.number_of_vertices() << "\n";
}
开发者ID:Asuzer,项目名称:cgal,代码行数:28,代码来源:mesh_moebius_strip.cpp

示例2: ShereMesh

void ShereMesh() {
  Tr tr;            // 3D-Delaunay triangulation
  C2t3 c2t3 (tr);   // 2D-complex in 3D-Delaunay triangulation

  // defining the surface
  Surface_3 surface(sphere_function,             // pointer to function
                    Sphere_3(CGAL::ORIGIN, 2.)); // bounding sphere
  // Note that "2." above is the *squared* radius of the bounding sphere!

  // defining meshing criteria
  CGAL::Surface_mesh_default_criteria_3<Tr> criteria(30.,  // angular bound
                                                     0.1,  // radius bound
                                                     0.1); // distance bound
  // meshing surface
  CGAL::make_surface_mesh(c2t3, surface, criteria, CGAL::Non_manifold_tag());

  std::cout << "Final number of points: " << tr.number_of_vertices() << "\n";

  //Output mesh
  //Polyhedron polymesh;
  //bool result = CGAL::output_surface_facets_to_polyhedron(c2t3, polymesh);
  //std::cout << "output_surface_facets_to_polyhedron: " << result << "\n";

  //Scommentare per salvare mesh su file
  std::ofstream out("mesh_sphere_test_low.off");
  CGAL::output_surface_facets_to_off (out, c2t3);
  std::cout << "SAVED MESH\n";

  //std::list<TriangleGT> triangleMesh;
  //std::back_insert_iterator<std::list<TriangleGT> > bii(triangleMesh);
  //output_surface_facets_to_triangle_soup(c2t3, bii);
}
开发者ID:Sunwinds,项目名称:larmor-physx,代码行数:32,代码来源:SphereMesher.cpp

示例3: main

int main() {
  Tr tr;            // 3D-Delaunay triangulation
  C2t3 c2t3 (tr);   // 2D-complex in 3D-Delaunay triangulation

  // defining the surface
  Surface_3 surface(sphere_function,             // pointer to function
                    Sphere_3(CGAL::ORIGIN, 2.)); // bounding sphere
  // Note that "2." above is the *squared* radius of the bounding sphere!

  // defining meshing criteria
  CGAL::Surface_mesh_default_criteria_3<Tr> criteria(30.,  // angular bound
                                                     0.1,  // radius bound
                                                     0.1); // distance bound
  // meshing surface
  CGAL::make_surface_mesh(c2t3, surface, criteria, CGAL::Non_manifold_tag());

  std::cout << "Final number of points: " << tr.number_of_vertices() << "\n";
}
开发者ID:Asuzer,项目名称:cgal,代码行数:18,代码来源:mesh_an_implicit_function.cpp

示例4: main

int main() {
  Tr tr;            // 3D-Delaunay triangulation
  C2t3 c2t3 (tr);   // 2D-complex in 3D-Delaunay triangulation

  // defining the surface
  std::ifstream file_input("data/triceratops.off");
  Polyhedral_surface surface(file_input);

  // defining meshing criteria
  CGAL::Surface_mesh_default_criteria_3<Tr> 
    facets_criteria(30.,  // angular bound
		    0.5,  // radius bound
		    0.5); // distance bound
  CGAL::Surface_mesh_default_edges_criteria_3<Tr>
    edges_criteria(0.5,  // radius bound
		   0.5); // distance bound

  // meshing surface
  CGAL::make_piecewise_smooth_surface_mesh(c2t3, surface,
					   facets_criteria, edges_criteria,
					   CGAL::Manifold_tag());

  std::cout << "Final number of points: " << tr.number_of_vertices() << "\n";
}
开发者ID:Asuzer,项目名称:cgal,代码行数:24,代码来源:polyhedron_remesher.cpp

示例5: main

int main(int argc, char** argv)
{
    int arg_count = 1;
    bool terminal_output = true;
    bool delaunay = false;
    bool verbose = false;

    if(argc < 2)
    {
        usage(argv);
        return 1;
    }

    while(argv[arg_count][0] == '-' && std::string(argv[arg_count]) != "--")
    {
        if(std::string(argv[arg_count]) == "-Q")
            terminal_output = false;
        else if(std::string(argv[arg_count]) == "-D")
            delaunay = true;
        else if(std::string(argv[arg_count]) == "-v")
            verbose = true;
        else
        {
            std::cerr << "Unknown option " << argv[arg_count] << std::endl;
            usage(argv);
            return 1;
        }
        ++arg_count;
    }
    if(std::string(argv[arg_count]) == "--")
        ++arg_count;

    if(argc < arg_count+1 || argc > arg_count+2)
    {
        usage(argv);
        return 1;
    }
    std::ifstream input(argv[arg_count]);
    if(input)
    {
        Tr t;
        CGAL::read_triangle_poly_file(t, input);
        if(delaunay)
        {
            if(verbose)
                std::cerr << "Make conforming Delaunay..." << std::endl;
            CGAL::make_conforming_Delaunay_2(t);
        }
        else
        {
            if(verbose)
                std::cerr << "Make conforming Gabriel..." << std::endl;
            CGAL::make_conforming_Gabriel_2(t);
        }

        if(argc==arg_count+1)
        {
            if(terminal_output)
                CGAL::write_triangle_poly_file(t, std::cout);
        }
        else
        {
            std::ofstream output(argv[arg_count+1]);
            CGAL::write_triangle_poly_file(t, output);
        }

        if(terminal_output)
            std::cerr
                    << "Number of points: " << t.number_of_vertices() << std::endl
                    << "Number of triangles: " << t.number_of_faces () << std::endl;

    }
    else
    {
        std::cerr << "Bad file: " << argv[arg_count] << std::endl;
        usage(argv);
        return 1;
    }
    return 0;
}
开发者ID:swarbhanu,项目名称:CGAL-Mesh,代码行数:80,代码来源:conform.cpp

示例6: vtk_file

    bool write_c3t3_to_vtk_xml_file(const C3t3 &c3t3, const std::string &file_name)
    {
        typedef typename C3t3::Triangulation Tr;
        typedef typename C3t3::Cells_in_complex_iterator Cell_iterator;
        typedef typename Tr::Finite_vertices_iterator Vertex_iterator;
        
        // Domain
        typedef Exact_predicates_inexact_constructions_kernel K;
        typedef K::FT FT;
        typedef K::Point_3 Point;
        
        // check that file extension is "vtu"
        CGAL_assertion(file_name.substr(file_name.length()-4,4) == ".vtu");
        
        // open file
        std::ofstream vtk_file(file_name.c_str());
        
        // header
        vtk_file << "<VTKFile type=\"UnstructuredGrid\" ";
        vtk_file << "version=\"0.1\" ";
        vtk_file << "byte_order=\"BigEndian\">" << std::endl;
        
        int indent_size = 2;
        std::string indent_unit(indent_size, ' ');
        std::string indent = indent_unit;
        vtk_file << indent + "<UnstructuredGrid>" << std::endl;
        
        // write mesh
        Tr t = c3t3.triangulation();
        int num_vertices = t.number_of_vertices();
        int num_cells = c3t3.number_of_cells_in_complex();
        
        indent += indent_unit;
        vtk_file << indent + "<Piece NumberOfPoints=\"" << num_vertices << "\" ";
        vtk_file << "NumberOfCells=\"" << num_cells << "\">" << std::endl;
        
        // Write vertices
        indent += indent_unit;
        vtk_file << indent + "<Points>" << std::endl;
        
        indent += indent_unit;
        vtk_file << indent;
        vtk_file << "<DataArray type=\"Float32\" NumberOfComponents=\"3\" Format=\"ascii\">" << std::endl;
        
        std::map<Point, int> V;
        int i=0;
        indent += indent_unit;
        
        for (Vertex_iterator it=t.finite_vertices_begin(); it != t.finite_vertices_end(); ++it)
        {
            vtk_file << indent;
            vtk_file << it->point().x() << " " << it->point().y() << " " << it->point().z() << std::endl;
            V[it->point()] = i;
            ++i;
        }
        
        indent.erase(indent.length()-indent_size, indent_size);
        vtk_file << indent + "</DataArray>" << std::endl;

        indent.erase(indent.length()-indent_size, indent_size);
        vtk_file << indent + "</Points>" << std::endl;

        // Write tetrahedra
        vtk_file << indent << "<Cells>" << std::endl;
        
        indent += indent_unit;
        vtk_file << indent;
        vtk_file << "<DataArray type=\"Int32\" Name=\"connectivity\" Format=\"ascii\">";
        vtk_file << std::endl;
        
        indent += indent_unit;
        Cell_iterator it;
        for (it = c3t3.cells_in_complex_begin(); it != c3t3.cells_in_complex_end(); ++it)
        {
            const typename Tr::Cell c(*it);
            const typename Tr::Vertex_handle v0 = c.vertex(0);
            const typename Tr::Vertex_handle v1 = c.vertex(1);
            const typename Tr::Vertex_handle v2 = c.vertex(2);
            const typename Tr::Vertex_handle v3 = c.vertex(3);
            
            vtk_file << indent;
            vtk_file << V[v0->point()] << " ";
            vtk_file << V[v1->point()] << " ";
            vtk_file << V[v2->point()] << " ";
            vtk_file << V[v3->point()] << std::endl;
        }
        
        indent.erase(indent.length()-indent_size, indent_size);
        vtk_file << indent + "</DataArray>" << std::endl;
        
        // offsets
        // every element is a four node tetrahedron so all offsets are multiples of 4
        vtk_file << indent;
        vtk_file << "<DataArray type=\"Int32\" Name=\"offsets\" Format=\"ascii\">";
        vtk_file << std::endl;
        i = 4;
        indent += indent_unit;
        for (it = c3t3.cells_in_complex_begin(); it != c3t3.cells_in_complex_end(); ++it)
        {
            vtk_file << indent << i << std::endl;
//.........这里部分代码省略.........
开发者ID:cbutakoff,项目名称:tools,代码行数:101,代码来源:poly2mesh.cpp


注:本文中的Tr::number_of_vertices方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。