当前位置: 首页>>代码示例>>C++>>正文


C++ TimeSeriesClassificationData::split方法代码示例

本文整理汇总了C++中TimeSeriesClassificationData::split方法的典型用法代码示例。如果您正苦于以下问题:C++ TimeSeriesClassificationData::split方法的具体用法?C++ TimeSeriesClassificationData::split怎么用?C++ TimeSeriesClassificationData::split使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TimeSeriesClassificationData的用法示例。


在下文中一共展示了TimeSeriesClassificationData::split方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main (int argc, const char * argv[])
{
	//Create a new DTW instance, using the default parameters
	DTW dtw;
    
	//Load some training data to train the classifier - the DTW uses TimeSeriesClassificationData
	TimeSeriesClassificationData trainingData;
    
	if( !trainingData.load("DTWTrainingData.grt") ){
		cout << "Failed to load training data!\n";
		return EXIT_FAILURE;
	}
    
	//Use 20% of the training dataset to create a test dataset
	TimeSeriesClassificationData testData = trainingData.split( 80 );

	//Trim the training data for any sections of non-movement at the start or end of the recordings
	dtw.enableTrimTrainingData(true,0.1,90);
    
	//Train the classifier
	if( !dtw.train( trainingData ) ){
		cout << "Failed to train classifier!\n";
		return EXIT_FAILURE;
	}	
    
	//Save the DTW model to a file
	if( !dtw.save("DTWModel.grt") ){
		cout << "Failed to save the classifier model!\n";
		return EXIT_FAILURE;
	}
    
	//Load the DTW model from a file
	if( !dtw.load("DTWModel.grt") ){
		cout << "Failed to load the classifier model!\n";
		return EXIT_FAILURE;
	}
    
	//Use the test dataset to test the DTW model
	double accuracy = 0;
	for(UINT i=0; i<testData.getNumSamples(); i++){
		//Get the i'th test sample - this is a timeseries
		UINT classLabel = testData[i].getClassLabel();
		MatrixDouble timeseries = testData[i].getData();
        
		//Perform a prediction using the classifier
		if( !dtw.predict( timeseries ) ){
			cout << "Failed to perform prediction for test sampel: " << i <<"\n";
			return EXIT_FAILURE;
		}
        
		//Get the predicted class label
		UINT predictedClassLabel = dtw.getPredictedClassLabel();
		double maximumLikelihood = dtw.getMaximumLikelihood();
		VectorDouble classLikelihoods = dtw.getClassLikelihoods();
		VectorDouble classDistances = dtw.getClassDistances();
        
		//Update the accuracy
		if( classLabel == predictedClassLabel ) accuracy++;
        
        cout << "TestSample: " << i <<  "\tClassLabel: " << classLabel << "\tPredictedClassLabel: " << predictedClassLabel << "\tMaximumLikelihood: " << maximumLikelihood << endl;
	}
    
	cout << "Test Accuracy: " << accuracy/double(testData.getNumSamples())*100.0 << "%" << endl;
    
	return EXIT_SUCCESS;
}
开发者ID:sgrignard,项目名称:grt,代码行数:66,代码来源:DTWExample.cpp

示例2: main

int main(int argc, const char * argv[]){
    
    //Load the training data
    TimeSeriesClassificationData trainingData;
    
    if( !trainingData.load("HMMTrainingData.grt") ){
        cout << "ERROR: Failed to load training data!\n";
        return false;
    }
    
    //Remove 20% of the training data to use as test data
    TimeSeriesClassificationData testData = trainingData.split( 80 );
    
    //The input to the HMM must be a quantized discrete value
    //We therefore use a KMeansQuantizer to covert the N-dimensional continuous data into 1-dimensional discrete data
    const UINT NUM_SYMBOLS = 10;
    KMeansQuantizer quantizer( NUM_SYMBOLS );
    
    //Train the quantizer using the training data
    if( !quantizer.train( trainingData ) ){
        cout << "ERROR: Failed to train quantizer!\n";
        return false;
    }
    
    //Quantize the training data
    TimeSeriesClassificationData quantizedTrainingData( 1 );
    
    for(UINT i=0; i<trainingData.getNumSamples(); i++){
        
        UINT classLabel = trainingData[i].getClassLabel();
        MatrixDouble quantizedSample;
        
        for(UINT j=0; j<trainingData[i].getLength(); j++){
            quantizer.quantize( trainingData[i].getData().getRow(j) );
            
            quantizedSample.push_back( quantizer.getFeatureVector() );
        }
        
        if( !quantizedTrainingData.addSample(classLabel, quantizedSample) ){
            cout << "ERROR: Failed to quantize training data!\n";
            return false;
        }
        
    }
    
    //Create a new HMM instance
    HMM hmm;
    
    //Set the HMM as a Discrete HMM
    hmm.setHMMType( HMM_DISCRETE );
    
    //Set the number of states in each model
    hmm.setNumStates( 4 );
    
    //Set the number of symbols in each model, this must match the number of symbols in the quantizer
    hmm.setNumSymbols( NUM_SYMBOLS );
    
    //Set the HMM model type to LEFTRIGHT with a delta of 1
    hmm.setModelType( HMM_LEFTRIGHT );
    hmm.setDelta( 1 );
    
    //Set the training parameters
    hmm.setMinChange( 1.0e-5 );
    hmm.setMaxNumEpochs( 100 );
    hmm.setNumRandomTrainingIterations( 20 );
    
    //Train the HMM model
    if( !hmm.train( quantizedTrainingData ) ){
        cout << "ERROR: Failed to train the HMM model!\n";
        return false;
    }
    
    //Save the HMM model to a file
    if( !hmm.save( "HMMModel.grt" ) ){
        cout << "ERROR: Failed to save the model to a file!\n";
        return false;
    }
    
    //Load the HMM model from a file
    if( !hmm.load( "HMMModel.grt" ) ){
        cout << "ERROR: Failed to load the model from a file!\n";
        return false;
    }
    
    //Quantize the test data
    TimeSeriesClassificationData quantizedTestData( 1 );
    
    for(UINT i=0; i<testData.getNumSamples(); i++){
        
        UINT classLabel = testData[i].getClassLabel();
        MatrixDouble quantizedSample;
        
        for(UINT j=0; j<testData[i].getLength(); j++){
            quantizer.quantize( testData[i].getData().getRow(j) );
            
            quantizedSample.push_back( quantizer.getFeatureVector() );
        }
        
        if( !quantizedTestData.addSample(classLabel, quantizedSample) ){
            cout << "ERROR: Failed to quantize training data!\n";
//.........这里部分代码省略.........
开发者ID:sgrignard,项目名称:grt,代码行数:101,代码来源:HMMDiscreteExample.cpp


注:本文中的TimeSeriesClassificationData::split方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。