当前位置: 首页>>代码示例>>C++>>正文


C++ TimeSeries::cend_values方法代码示例

本文整理汇总了C++中TimeSeries::cend_values方法的典型用法代码示例。如果您正苦于以下问题:C++ TimeSeries::cend_values方法的具体用法?C++ TimeSeries::cend_values怎么用?C++ TimeSeries::cend_values使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TimeSeries的用法示例。


在下文中一共展示了TimeSeries::cend_values方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: testCalibration

void GARCHTest::testCalibration() {

    BOOST_TEST_MESSAGE("Testing GARCH model calibration ...");

    Date start(7, July, 1962), d = start;
    TimeSeries<Volatility> ts;
    Garch11 garch(0.2, 0.3, 0.4);
    GaussianGenerator rng(MersenneTwisterUniformRng(48));

    Volatility r = 0.0, v = 0.0;
    for (std::size_t i = 0; i < 50000; ++i, d += 1) {
        v = garch.forecast(r, v);
        r = rng.next().value * std::sqrt(v);
        ts[d] = r;
    }

    // Default calibration; works fine in most cases
    Garch11 cgarch1(ts);
    Real f1 = cgarch1.logLikelihood();
    Real f2 = -cgarch1.costFunction(ts.cbegin_values(), ts.cend_values(),
                                    garch.alpha(), garch.beta(), garch.omega());

    Results calibrated = { 0.207592, 0.281979, 0.204647, -0.0217413 };

    CHECK(calibrated, cgarch1, alpha, tolerance);
    CHECK(calibrated, cgarch1, beta, tolerance);
    CHECK(calibrated, cgarch1, omega, tolerance);
    CHECK(calibrated, cgarch1, logLikelihood, tolerance);

    // Type 1 initial guess - no further optimization
    Garch11 cgarch2(ts, Garch11::MomentMatchingGuess);
    DummyOptimizationMethod m;
    cgarch2.calibrate(ts, m, EndCriteria (3, 2, 0.0, 0.0, 0.0));
    Results expected1 = { 0.265749, 0.156956, 0.230964, -0.0227179 };

    CHECK(expected1, cgarch2, alpha, tolerance);
    CHECK(expected1, cgarch2, beta, tolerance);
    CHECK(expected1, cgarch2, omega, tolerance);
    CHECK(expected1, cgarch2, logLikelihood, tolerance);

    // Optimization from this initial guess
    cgarch2.calibrate(ts);

    CHECK(calibrated, cgarch2, alpha, tolerance);
    CHECK(calibrated, cgarch2, beta, tolerance);
    CHECK(calibrated, cgarch2, omega, tolerance);
    CHECK(calibrated, cgarch2, logLikelihood, tolerance);

    // Type 2 initial guess - no further optimization
    Garch11 cgarch3(ts, Garch11::GammaGuess);
    cgarch3.calibrate(ts, m, EndCriteria (3, 2, 0.0, 0.0, 0.0));
    Results expected2 = { 0.269896, 0.211373, 0.207534, -0.022798 };

    CHECK(expected2, cgarch3, alpha, tolerance);
    CHECK(expected2, cgarch3, beta, tolerance);
    CHECK(expected2, cgarch3, omega, tolerance);
    CHECK(expected2, cgarch3, logLikelihood, tolerance);

    // Optimization from this initial guess
    cgarch3.calibrate(ts);

    CHECK(calibrated, cgarch3, alpha, tolerance);
    CHECK(calibrated, cgarch3, beta, tolerance);
    CHECK(calibrated, cgarch3, omega, tolerance);
    CHECK(calibrated, cgarch3, logLikelihood, tolerance);

    // Double optimization using type 1 and 2 initial guesses
    Garch11 cgarch4(ts,  Garch11::DoubleOptimization);
    cgarch4.calibrate(ts);

    CHECK(calibrated, cgarch4, alpha, tolerance);
    CHECK(calibrated, cgarch4, beta, tolerance);
    CHECK(calibrated, cgarch4, omega, tolerance);
    CHECK(calibrated, cgarch4, logLikelihood, tolerance);

    // Alternative, gradient based optimization - usually gives worse
    // results than simplex
    LevenbergMarquardt lm;
    cgarch4.calibrate(ts, lm, EndCriteria (100000, 500, 1e-8, 1e-8, 1e-8));
    Results expected3 = { 0.265196, 0.277364, 0.678812, -0.216313 };

    CHECK(expected3, cgarch4, alpha, tolerance);
    CHECK(expected3, cgarch4, beta, tolerance);
    CHECK(expected3, cgarch4, omega, tolerance);
    CHECK(expected3, cgarch4, logLikelihood, tolerance);
}
开发者ID:JingGuo0806,项目名称:quantlib-full,代码行数:86,代码来源:garch.cpp


注:本文中的TimeSeries::cend_values方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。