本文整理汇总了C++中TicToc::toc方法的典型用法代码示例。如果您正苦于以下问题:C++ TicToc::toc方法的具体用法?C++ TicToc::toc怎么用?C++ TicToc::toc使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TicToc
的用法示例。
在下文中一共展示了TicToc::toc方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main(int argc, char * argv[])
{
double portion = 0.9;
uint64 memory_size = getMemorySize() * portion;
uint64 page_size = sysconf(_SC_PAGESIZE);
uint64 page_nums = memory_size/page_size;
// Need to Configure Parse
bool debug = true;
if(debug)
{
printf("*--------------------------*\nMemory Information... \n*--------------------------*\n");
printf("Memory Size (bytes): %lu | ",memory_size);
printf("Page Size (bytes): %lu | ",page_size);
printf("Number of Pages: %lu \n",page_nums);
printf("Note: We allocte %f of the memory \n",portion*100);
}
// Allocate memory
Byte * memory = (Byte * ) malloc(memory_size);
double iterations = 10;
double total_mem_time = 0;
double total_alligned_page = 0;
double total_unalligned_page =0;
for(double j =0 ; j < iterations; j++)
{
TicToc timer;
timer.tic();
memset(memory,0,memory_size);
total_mem_time+= (timer.toc()/1000000);
timer.tic();
for(uint64 i =0 ; i < page_nums; i++ )
{
memset(memory + i* page_size,i,page_size);
}
total_alligned_page+= (timer.toc()/page_size);
timer.tic();
for(uint64 i =0 ; i < page_nums - 1 ; i++ )
{
memset(memory + i * page_size + 2,i,page_size);
}
total_unalligned_page+=(timer.toc()/(page_size - 1));
}
printf("*--------------------------*\nBenchmarking Starting... \n*--------------------------*\n");
printf("Memory Access Time: %f (secs)\n",total_mem_time/iterations);
printf("Alligned Page Access Time: %f (usec)\n",total_alligned_page/iterations);
printf("Unalligned Page Access Time: %f (usec)\n",total_unalligned_page/iterations);
// Free allocated memory
free(memory);
}
示例2: fromROSMsg
void
compute (const sensor_msgs::PointCloud2::ConstPtr &input, PolygonMesh &output,
float leaf_size, float iso_level, int use_dot)
{
PointCloud<PointNormal>::Ptr xyz_cloud (new pcl::PointCloud<PointNormal> ());
fromROSMsg (*input, *xyz_cloud);
boost::shared_ptr<MarchingCubes<PointNormal> > marching_cubes;
if (use_dot)
marching_cubes.reset (new MarchingCubesGreedyDot<PointNormal> ());
else
marching_cubes.reset (new MarchingCubesGreedy<PointNormal> ());
marching_cubes->setLeafSize (leaf_size);
marching_cubes->setIsoLevel (iso_level);
marching_cubes->setInputCloud (xyz_cloud);
TicToc tt;
tt.tic ();
print_highlight ("Computing ");
marching_cubes->reconstruct (output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms]\n");
}
示例3: xyznormals
void
compute (const sensor_msgs::PointCloud2::ConstPtr &input, sensor_msgs::PointCloud2 &output,
int k, double radius)
{
// Convert data to PointCloud<T>
PointCloud<PointNormal>::Ptr xyznormals (new PointCloud<PointNormal>);
fromROSMsg (*input, *xyznormals);
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
FPFHEstimation<PointNormal, PointNormal, FPFHSignature33> ne;
ne.setInputCloud (xyznormals);
ne.setInputNormals (xyznormals);
ne.setSearchMethod (search::KdTree<PointNormal>::Ptr (new search::KdTree<PointNormal>));
ne.setKSearch (k);
ne.setRadiusSearch (radius);
PointCloud<FPFHSignature33> fpfhs;
ne.compute (fpfhs);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", fpfhs.width * fpfhs.height); print_info (" points]\n");
// Convert data back
sensor_msgs::PointCloud2 output_fpfhs;
toROSMsg (fpfhs, output_fpfhs);
concatenateFields (*input, output_fpfhs, output);
}
示例4: if
void
saveCloud (const string &filename, const pcl::PCLPointCloud2 &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
PCDWriter w_pcd;
PLYWriter w_ply;
std::string output_ext = boost::filesystem::extension (filename);
std::transform (output_ext.begin (), output_ext.end (), output_ext.begin (), ::tolower);
if (output_ext.compare (".pcd") == 0)
{
w_pcd.writeBinaryCompressed (filename, output);
}
else if (output_ext.compare (".ply") == 0)
{
w_ply.writeBinary (filename, output);
}
else if (output_ext.compare (".vtk") == 0)
{
w_ply.writeBinary (filename, output);
}
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
示例5: return
bool
loadPCLZF (const std::string &filename_rgb,
const std::string &filename_depth,
const std::string &filename_params,
pcl::PointCloud<pcl::PointXYZRGBA> &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename_rgb.c_str ());
tt.tic ();
pcl::io::LZFRGB24ImageReader rgb;
pcl::io::LZFBayer8ImageReader bayer;
pcl::io::LZFYUV422ImageReader yuv;
pcl::io::LZFDepth16ImageReader depth;
rgb.readParameters (filename_params);
bayer.readParameters (filename_params);
depth.readParameters (filename_params);
yuv.readParameters (filename_params);
if (!rgb.read (filename_rgb, cloud))
if (!yuv.read (filename_rgb, cloud))
bayer.read (filename_rgb, cloud);
depth.read (filename_depth, cloud);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());
return (true);
}
示例6: load
bool
load (const std::string &file)
{
// Load the input file
TicToc tt; tt.tic ();
print_highlight (stderr, "Loading ");
print_value (stderr, "%s ", file.c_str ());
cloud_.reset (new PointCloud<PointT>);
if (io::loadPCDFile (file, *cloud_) < 0)
{
print_error (stderr, "[error]\n");
return (false);
}
print_info ("[done, "); print_value ("%g", tt.toc ());
print_info (" ms : "); print_value ("%lu", cloud_->size ()); print_info (" points]\n");
if (cloud_->isOrganized ())
search_.reset (new search::OrganizedNeighbor<PointT>);
else
search_.reset (new search::KdTree<PointT>);
search_->setInputCloud (cloud_);
return (true);
}
示例7: idx
void
compute (ConstCloudPtr &input, Cloud &output, int max_window_size, float slope, float max_distance, float initial_distance, float cell_size, float base, bool exponential)
{
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
std::vector<int> ground;
ProgressiveMorphologicalFilter<PointType> pmf;
pmf.setInputCloud (input);
pmf.setMaxWindowSize (max_window_size);
pmf.setSlope (slope);
pmf.setMaxDistance (max_distance);
pmf.setInitialDistance (initial_distance);
pmf.setCellSize (cell_size);
pmf.setBase (base);
pmf.setExponential (exponential);
pmf.extract (ground);
PointIndicesPtr idx (new PointIndices);
idx->indices = ground;
ExtractIndices<PointType> extract;
extract.setInputCloud (input);
extract.setIndices (idx);
extract.setNegative (false);
extract.filter (output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
示例8: xyz
void
compute (const sensor_msgs::PointCloud2::ConstPtr &input, sensor_msgs::PointCloud2 &output,
int k, double radius)
{
// Convert data to PointCloud<T>
PointCloud<PointXYZ>::Ptr xyz (new PointCloud<PointXYZ>);
fromROSMsg (*input, *xyz);
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud (xyz);
// ne.setSearchMethod (pcl::search::KdTree<pcl::PointXYZ>::Ptr (new pcl::search::KdTree<pcl::PointXYZ>));
ne.setKSearch (k);
ne.setRadiusSearch (radius);
PointCloud<Normal> normals;
ne.compute (normals);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", normals.width * normals.height); print_info (" points]\n");
// Convert data back
sensor_msgs::PointCloud2 output_normals;
toROSMsg (normals, output_normals);
concatenateFields (*input, output_normals, output);
}
示例9: xyz
void
compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
double radius)
{
// Convert data to PointCloud<T>
PointCloud<PointXYZ>::Ptr xyz (new PointCloud<PointXYZ>);
fromPCLPointCloud2 (*input, *xyz);
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
UniformSampling<PointXYZ> us;
us.setInputCloud (xyz);
us.setRadiusSearch (radius);
PointCloud<PointXYZ> output_;
us.filter (output_);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output_.size()); print_info (" points]\n");
// Convert data back
toPCLPointCloud2 (output_, output);
}
示例10: xyz
void
compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
float sigma_s = 5.f, float sigma_r = 0.03f)
{
// Convert data to PointCloud<T>
PointCloud<PointXYZ>::Ptr xyz (new PointCloud<PointXYZ>);
fromPCLPointCloud2 (*input, *xyz);
TicToc tt;
tt.tic ();
// Apply the filter
FastBilateralFilter<PointXYZ> fbf;
fbf.setInputCloud (xyz);
fbf.setSigmaS (sigma_s);
fbf.setSigmaR (sigma_r);
PointCloud<PointXYZ> xyz_filtered;
fbf.filter (xyz_filtered);
print_highlight ("Filtered data in "); print_value ("%g", tt.toc ()); print_info (" ms for "); print_value ("%zu", xyz_filtered.size ()); print_info (" points.\n");
// Convert data back
pcl::PCLPointCloud2 output_xyz;
toPCLPointCloud2 (xyz_filtered, output_xyz);
concatenateFields (*input, output_xyz, output);
}
示例11:
void
compute (const CloudT::Ptr &input, std::vector<FeatureT::Ptr> &trained_features,
CloudLT::Ptr &out,
float normal_radius_search,
float fpfh_radius_search,
float feature_threshold)
{
TicToc tt;
tt.tic ();
print_highlight ("Computing ");
UnaryClassifier<PointT> classifier;
classifier.setInputCloud (input);
classifier.setTrainedFeatures (trained_features);
classifier.setNormalRadiusSearch (normal_radius_search);
classifier.setFPFHRadiusSearch (fpfh_radius_search);
classifier.setFeatureThreshold (feature_threshold);
classifier.segment (out);
print_info ("[done, ");
print_value ("%g", tt.toc ());
print_info (" ms : "); print_value ("%d", out->width * out->height);
print_info (" points]\n");
}
示例12: cloud
void
compute (const PointCloud<PointNormal>::Ptr &input, pcl::PolygonMesh &output,
double mu, double radius)
{
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
PointCloud<PointNormal>::Ptr cloud (new PointCloud<PointNormal> ());
for (size_t i = 0; i < cloud->size (); ++i)
if (pcl_isfinite (input->points[i].x))
cloud->push_back (input->points[i]);
cloud->width = static_cast<uint32_t> (cloud->size ());
cloud->height = 1;
cloud->is_dense = false;
GreedyProjectionTriangulation<PointNormal> gpt;
gpt.setSearchMethod (pcl::search::KdTree<pcl::PointNormal>::Ptr (new pcl::search::KdTree<pcl::PointNormal>));
gpt.setInputCloud (cloud);
gpt.setSearchRadius (radius);
gpt.setMu (mu);
gpt.reconstruct (output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%zu", output.polygons.size ()); print_info (" polygons]\n");
}
示例13: fromROSMsg
void
compute (const sensor_msgs::PointCloud2::ConstPtr &input, PolygonMesh &output,
int hoppe_or_rbf, float iso_level, int grid_res, float extend_percentage, float off_surface_displacement)
{
PointCloud<PointNormal>::Ptr xyz_cloud (new pcl::PointCloud<PointNormal> ());
fromROSMsg (*input, *xyz_cloud);
MarchingCubes<PointNormal> *mc;
if (hoppe_or_rbf == 0)
mc = new MarchingCubesHoppe<PointNormal> ();
else
{
mc = new MarchingCubesRBF<PointNormal> ();
(reinterpret_cast<MarchingCubesRBF<PointNormal>*> (mc))->setOffSurfaceDisplacement (off_surface_displacement);
}
mc->setIsoLevel (iso_level);
mc->setGridResolution (grid_res, grid_res, grid_res);
mc->setPercentageExtendGrid (extend_percentage);
mc->setInputCloud (xyz_cloud);
TicToc tt;
tt.tic ();
print_highlight ("Computing ");
mc->reconstruct (output);
delete mc;
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms]\n");
}
示例14: savePNGFile
void
saveImage (const std::string &filename, const pcl::PCLImage& image)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
savePNGFile (filename, image);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", image.width * image.height); print_info (" points]\n");
}
示例15: main
int main(int argc, char *argv[])
{
if (argc < 2)
{
print_help(argv);
return -1;
}
// Parse the command line arguments for .pcd files
vector<int> txt_file_indices;
txt_file_indices = parse_file_extension_argument(argc, argv, ".pcd");
if (txt_file_indices.size () != 1)
{
print_error("Need one input PCD file to continue.\n");
return -1;
}
string inputFileName = string(argv[txt_file_indices[0]]);
size_t ext = inputFileName.find(".pcd");
string outputFileName = inputFileName.substr(0, ext) + string(".vtk");
PointCloud<PointNormal>::Ptr cloud_with_normals(new PointCloud<PointNormal>);
loadPCDFile<PointNormal>(argv[1], *cloud_with_normals);
search::KdTree<PointNormal>::Ptr tree2 (new search::KdTree<PointNormal>);
tree2->setInputCloud (cloud_with_normals);
// Initialize objects
GreedyProjectionTriangulation<PointNormal> gp3;
PolygonMesh triangles;
// Set the maximum distance between connected points (maximum edge length)
gp3.setSearchRadius (0.025);
// Set typical values for the parameters
gp3.setMu (2.5);
gp3.setMaximumNearestNeighbors(500);
gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees
gp3.setMinimumAngle(M_PI/18); // 10 degrees
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
gp3.setNormalConsistency(false);
// Get result of triangulation
gp3.setInputCloud (cloud_with_normals);
gp3.setSearchMethod (tree2);
TicToc tt;
tt.tic();
print_highlight("Computing GreedyProjectionTriangulation ");
gp3.reconstruct (triangles);
print_info("[done, "); print_value("%g", tt.toc()); print_info(" ms]\n");
saveVTKFile (outputFileName, triangles);
print_highlight(string(string("Saving ") + outputFileName + string("\n")).c_str());
return 0;
}