本文整理汇总了C++中Thyra::createMember方法的典型用法代码示例。如果您正苦于以下问题:C++ Thyra::createMember方法的具体用法?C++ Thyra::createMember怎么用?C++ Thyra::createMember使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Thyra
的用法示例。
在下文中一共展示了Thyra::createMember方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ostab
void ImplicitBDFStepperRampingStepControl<Scalar>::initialize(
const StepperBase<Scalar>& stepper)
{
// Initialize can be called from the stepper when setInitialCondition
// is called.
using Teuchos::as;
typedef Teuchos::ScalarTraits<Scalar> ST;
using Thyra::createMember;
// Set initial time:
TimeRange<Scalar> stepperRange = stepper.getTimeRange();
TEUCHOS_TEST_FOR_EXCEPTION(
!stepperRange.isValid(),
std::logic_error,
"Error, Stepper does not have valid time range for initialization "
"of ImplicitBDFStepperRampingStepControl!\n");
if (is_null(parameterList_)) {
RCP<Teuchos::ParameterList> emptyParameterList =
Teuchos::rcp(new Teuchos::ParameterList);
this->setParameterList(emptyParameterList);
}
if (is_null(errWtVecCalc_)) {
RCP<ImplicitBDFStepperErrWtVecCalc<Scalar> > IBDFErrWtVecCalc =
rcp(new ImplicitBDFStepperErrWtVecCalc<Scalar>());
errWtVecCalc_ = IBDFErrWtVecCalc;
}
stepControlState_ = UNINITIALIZED;
requestedStepSize_ = Scalar(-1.0);
currentStepSize_ = initialStepSize_;
currentOrder_ = 1;
nextStepSize_ = initialStepSize_;
nextOrder_ = 1;
numberOfSteps_ = 0;
totalNumberOfFailedSteps_ = 0;
countOfConstantStepsAfterFailure_ = 0;
if (is_null(delta_)) {
delta_ = createMember(stepper.get_x_space());
}
if (is_null(errWtVec_)) {
errWtVec_ = createMember(stepper.get_x_space());
}
V_S(delta_.ptr(),ST::zero());
if ( doOutput_(Teuchos::VERB_HIGH) ) {
RCP<Teuchos::FancyOStream> out = this->getOStream();
Teuchos::OSTab ostab(out,1,"initialize");
*out << "currentOrder_ = " << currentOrder_ << std::endl;
*out << "numberOfSteps_ = " << numberOfSteps_ << std::endl;
}
setStepControlState_(BEFORE_FIRST_STEP);
}
示例2: createMember
const Teuchos::RCP<TriKota::DiagonalROME<Scalar> >
createModel(
const int globalDim,
const typename Teuchos::ScalarTraits<Scalar>::magnitudeType &g_offset
)
{
using Teuchos::RCP;
const RCP<const Teuchos::Comm<Thyra::Ordinal> > comm =
Teuchos::DefaultComm<Thyra::Ordinal>::getComm();
const int numProcs = comm->getSize();
TEUCHOS_TEST_FOR_EXCEPT_MSG( numProcs > globalDim,
"Error, the number of processors can not be greater than the global"
" dimension of the vectors!." );
const int localDim = globalDim / numProcs;
const int localDimRemainder = globalDim % numProcs;
TEUCHOS_TEST_FOR_EXCEPT_MSG( localDimRemainder != 0,
"Error, the number of processors must divide into the global number"
" of elements exactly for now!." );
const RCP<TriKota::DiagonalROME<Scalar> > model =
Teuchos::rcp(new TriKota::DiagonalROME<Scalar>(localDim));
const RCP<const Thyra::VectorSpaceBase<Scalar> > p_space = model->get_p_space(0);
const RCP<Thyra::VectorBase<Scalar> > ps = createMember(p_space);
const Scalar ps_val = 2.0;
Thyra::V_S(ps.ptr(), ps_val);
model->setSolutionVector(ps);
model->setScalarOffset(g_offset);
return model;
}
示例3: buildInverseMassMatrix
void ExplicitModelEvaluator<Scalar>::
buildInverseMassMatrix() const
{
typedef Thyra::ModelEvaluatorBase MEB;
using Teuchos::RCP;
using Thyra::createMember;
RCP<const Thyra::ModelEvaluator<Scalar> > me = this->getUnderlyingModel();
// first allocate space for the mass matrix
RCP<Thyra::LinearOpBase<Scalar> > mass = me->create_W_op();
// intialize a zero to get rid of the x-dot
if(zero_==Teuchos::null) {
zero_ = Thyra::createMember(*me->get_x_space());
Thyra::assign(zero_.ptr(),0.0);
}
// request only the mass matrix from the physics
// Model evaluator builds: alpha*u_dot + beta*F(u) = 0
MEB::InArgs<Scalar> inArgs = me->createInArgs();
inArgs.set_x(createMember(me->get_x_space()));
inArgs.set_x_dot(zero_);
inArgs.set_alpha(-1.0);
inArgs.set_beta(0.0);
// set the one time beta to ensure dirichlet conditions
// are correctly included in the mass matrix: do it for
// both epetra and Tpetra. If a panzer model evaluator has
// not been passed in...oh well you get what you asked for!
if(panzerModel_!=Teuchos::null)
panzerModel_->setOneTimeDirichletBeta(-1.0);
else if(panzerEpetraModel_!=Teuchos::null)
panzerEpetraModel_->setOneTimeDirichletBeta(-1.0);
// set only the mass matrix
MEB::OutArgs<Scalar> outArgs = me->createOutArgs();
outArgs.set_W_op(mass);
// this will fill the mass matrix operator
me->evalModel(inArgs,outArgs);
if(!massLumping_) {
invMassMatrix_ = Thyra::inverse<Scalar>(*me->get_W_factory(),mass);
}
else {
// build lumped mass matrix (assumes all positive mass entries, does a simple sum)
Teuchos::RCP<Thyra::VectorBase<Scalar> > ones = Thyra::createMember(*mass->domain());
Thyra::assign(ones.ptr(),1.0);
RCP<Thyra::VectorBase<Scalar> > invLumpMass = Thyra::createMember(*mass->range());
Thyra::apply(*mass,Thyra::NOTRANS,*ones,invLumpMass.ptr());
Thyra::reciprocal(*invLumpMass,invLumpMass.ptr());
invMassMatrix_ = Thyra::diagonal(invLumpMass);
}
}
示例4: x_space_
Simple2DModelEvaluator<Scalar>::Simple2DModelEvaluator()
: x_space_(Thyra::defaultSpmdVectorSpace<Scalar>(2)),
f_space_(x_space_),
W_factory_(Thyra::defaultSerialDenseLinearOpWithSolveFactory<Scalar>()),
d_(0.0),
p_(x_space_->dim(), Teuchos::ScalarTraits<Scalar>::zero()),
showGetInvalidArg_(false)
{
using Teuchos::RCP;
using Thyra::VectorBase;
using Thyra::createMember;
typedef Thyra::ModelEvaluatorBase MEB;
typedef Teuchos::ScalarTraits<Scalar> ST;
MEB::InArgsSetup<Scalar> inArgs;
inArgs.setModelEvalDescription(this->description());
inArgs.setSupports(MEB::IN_ARG_x);
prototypeInArgs_ = inArgs;
MEB::OutArgsSetup<Scalar> outArgs;
outArgs.setModelEvalDescription(this->description());
outArgs.setSupports(MEB::OUT_ARG_f);
outArgs.setSupports(MEB::OUT_ARG_W_op);
outArgs.setSupports(MEB::OUT_ARG_W_prec);
prototypeOutArgs_ = outArgs;
nominalValues_ = inArgs;
x0_ = createMember(x_space_);
V_S(x0_.ptr(), ST::zero());
nominalValues_.set_x(x0_);
set_d(10.0);
set_p(Teuchos::tuple<Scalar>(2.0, 0.0)());
set_x0(Teuchos::tuple<Scalar>(1.0, 1.0)());
}
示例5: tab
NonlinearCGUtils::ESolveReturn
NonlinearCG<Scalar>::doSolve(
const Ptr<Thyra::VectorBase<Scalar> > &p_inout,
const Ptr<ScalarMag> &g_opt_out,
const Ptr<const ScalarMag> &g_reduct_tol_in,
const Ptr<const ScalarMag> &g_grad_tol_in,
const Ptr<const ScalarMag> &alpha_init_in,
const Ptr<int> &numIters_out
)
{
typedef ScalarTraits<Scalar> ST;
typedef ScalarTraits<ScalarMag> SMT;
using Teuchos::null;
using Teuchos::as;
using Teuchos::tuple;
using Teuchos::rcpFromPtr;
using Teuchos::optInArg;
using Teuchos::inOutArg;
using GlobiPack::computeValue;
using GlobiPack::PointEval1D;
using Thyra::VectorSpaceBase;
using Thyra::VectorBase;
using Thyra::MultiVectorBase;
using Thyra::scalarProd;
using Thyra::createMember;
using Thyra::createMembers;
using Thyra::get_ele;
using Thyra::norm;
using Thyra::V_StV;
using Thyra::Vt_S;
using Thyra::eval_g_DgDp;
typedef Thyra::Ordinal Ordinal;
typedef Thyra::ModelEvaluatorBase MEB;
namespace NCGU = NonlinearCGUtils;
using std::max;
// Validate input
g_opt_out.assert_not_null();
// Set streams
const RCP<Teuchos::FancyOStream> out = this->getOStream();
linesearch_->setOStream(out);
// Determine what step constants will be computed
const bool compute_beta_PR =
(
solverType_ == NCGU::NONLINEAR_CG_PR_PLUS
||
solverType_ == NCGU::NONLINEAR_CG_FR_PR
);
const bool compute_beta_HS = (solverType_ == NCGU::NONLINEAR_CG_HS);
//
// A) Set up the storage for the algorithm
//
const RCP<DefaultPolyLineSearchPointEvaluator<Scalar> >
pointEvaluator = defaultPolyLineSearchPointEvaluator<Scalar>();
const RCP<UnconstrainedOptMeritFunc1D<Scalar> >
meritFunc = unconstrainedOptMeritFunc1D<Scalar>(
model_, paramIndex_, responseIndex_ );
const RCP<const VectorSpaceBase<Scalar> >
p_space = model_->get_p_space(paramIndex_),
g_space = model_->get_g_space(responseIndex_);
// Stoarge for current iteration
RCP<VectorBase<Scalar> >
p_k = rcpFromPtr(p_inout), // Current solution for p
p_kp1 = createMember(p_space), // Trial point for p (in line search)
g_vec = createMember(g_space), // Vector (size 1) form of objective g(p)
g_grad_k = createMember(p_space), // Gradient of g DgDp^T
d_k = createMember(p_space), // Search direction
g_grad_k_diff_km1 = null; // g_grad_k - g_grad_km1 (if needed)
// Storage for previous iteration
RCP<VectorBase<Scalar> >
g_grad_km1 = null, // Will allocate if we need it!
d_km1 = null; // Will allocate if we need it!
ScalarMag
alpha_km1 = SMT::zero(),
g_km1 = SMT::zero(),
g_grad_km1_inner_g_grad_km1 = SMT::zero(),
g_grad_km1_inner_d_km1 = SMT::zero();
if (compute_beta_PR || compute_beta_HS) {
g_grad_km1 = createMember(p_space);
g_grad_k_diff_km1 = createMember(p_space);
}
if (compute_beta_HS) {
d_km1 = createMember(p_space);
}
//.........这里部分代码省略.........
示例6: computeCubicSplineCoeff
void computeCubicSplineCoeff(
const typename DataStore<Scalar>::DataStoreVector_t & data,
const Ptr<CubicSplineCoeff<Scalar> > & coeffPtr
)
{
using Teuchos::outArg;
typedef Teuchos::ScalarTraits<Scalar> ST;
using Thyra::createMember;
TEUCHOS_TEST_FOR_EXCEPTION(
(data.size() < 2), std::logic_error,
"Error! A minimum of two data points is required for this cubic spline."
);
// time data in the DataStoreVector should be unique and sorted
Array<Scalar> t;
Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > > x_vec, xdot_vec;
dataStoreVectorToVector<Scalar>( data, &t, &x_vec, &xdot_vec, NULL );
#ifdef HAVE_RYTHMOS_DEBUG
assertTimePointsAreSorted<Scalar>( t );
#endif // HAVE_RYTHMOS_DEBUG
// 11/18/08 tscoffe: Question: Should I erase everything in coeffPtr or
// re-use what I can? For now, I'll erase and create new each time.
CubicSplineCoeff<Scalar>& coeff = *coeffPtr;
// If there are only two points, then we do something special and just create
// a linear polynomial between the points and return.
if (t.size() == 2) {
coeff.t.clear();
coeff.a.clear(); coeff.b.clear(); coeff.c.clear(); coeff.d.clear();
coeff.t.reserve(2);
coeff.a.reserve(1); coeff.b.reserve(1); coeff.c.reserve(1); coeff.d.reserve(1);
coeff.t.push_back(t[0]);
coeff.t.push_back(t[1]);
coeff.a.push_back(x_vec[0]->clone_v());
coeff.b.push_back(createMember(x_vec[0]->space()));
coeff.c.push_back(createMember(x_vec[0]->space()));
coeff.d.push_back(createMember(x_vec[0]->space()));
Scalar h = coeff.t[1] - coeff.t[0];
V_StVpStV(outArg(*coeff.b[0]),ST::one()/h,*x_vec[1],-ST::one()/h,*x_vec[0]);
V_S(outArg(*coeff.c[0]),ST::zero());
V_S(outArg(*coeff.d[0]),ST::zero());
return;
}
// Data objects we'll need:
int n = t.length()-1; // Number of intervals
coeff.t.clear(); coeff.t.reserve(n+1);
coeff.a.clear(); coeff.a.reserve(n+1);
coeff.b.clear(); coeff.b.reserve(n);
coeff.c.clear(); coeff.c.reserve(n+1);
coeff.d.clear(); coeff.d.reserve(n);
Array<Scalar> h(n);
Array<RCP<Thyra::VectorBase<Scalar> > > alpha(n), z(n+1);
Array<Scalar> l(n+1), mu(n);
for (int i=0 ; i<n ; ++i) {
coeff.t.push_back(t[i]);
coeff.a.push_back(x_vec[i]->clone_v());
coeff.b.push_back(Thyra::createMember(x_vec[0]->space()));
coeff.c.push_back(Thyra::createMember(x_vec[0]->space()));
coeff.d.push_back(Thyra::createMember(x_vec[0]->space()));
alpha[i] = Thyra::createMember(x_vec[0]->space());
z[i] = Thyra::createMember(x_vec[0]->space());
}
coeff.a.push_back(x_vec[n]->clone_v());
coeff.t.push_back(t[n]);
coeff.c.push_back(Thyra::createMember(x_vec[0]->space()));
z[n] = Thyra::createMember(x_vec[0]->space());
Scalar zero = ST::zero();
Scalar one = ST::one();
Scalar two = Scalar(2*ST::one());
Scalar three = Scalar(3*ST::one());
// Algorithm starts here:
for (int i=0 ; i<n ; ++i) {
h[i] = coeff.t[i+1]-coeff.t[i];
}
for (int i=1 ; i<n ; ++i) {
V_StVpStV(outArg(*(alpha[i])),three/h[i],*coeff.a[i+1],-3/h[i],*coeff.a[i]);
Vp_StV(outArg(*(alpha[i])),-three/h[i-1],*coeff.a[i]);
Vp_StV(outArg(*(alpha[i])),+three/h[i-1],*coeff.a[i-1]);
}
l[0] = one;
mu[0] = zero;
V_S(outArg(*(z[0])),zero);
for (int i=1 ; i<n ; ++i) {
l[i] = 2*(coeff.t[i+1]-coeff.t[i-1])-h[i-1]*mu[i-1];
mu[i] = h[i]/l[i];
V_StVpStV(outArg(*(z[i])),one/l[i],*alpha[i],-h[i-1]/l[i],*z[i-1]);
}
l[n] = one;
V_S(outArg(*(z[n])),zero);
V_S(outArg(*(coeff.c[n])),zero);
for (int j=n-1 ; j >= 0 ; --j) {
V_StVpStV(outArg(*(coeff.c[j])),one,*z[j],-mu[j],*coeff.c[j+1]);
V_StVpStV(outArg(*(coeff.b[j])),one/h[j],*coeff.a[j+1],-one/h[j],*coeff.a[j]);
Vp_StV(outArg(*(coeff.b[j])),-h[j]/three,*coeff.c[j+1]);
Vp_StV(outArg(*(coeff.b[j])),-h[j]*two/three,*coeff.c[j]);
V_StVpStV(outArg(*(coeff.d[j])),one/(three*h[j]),*coeff.c[j+1],-one/(three*h[j]),*coeff.c[j]);
}
// Pop the last entry off of a and c to make them the right size.
coeff.a.erase(coeff.a.end()-1);
coeff.c.erase(coeff.c.end()-1);
//.........这里部分代码省略.........
示例7: ostab
void CubicSplineInterpolator<Scalar>::interpolate(
const Array<Scalar> &t_values,
typename DataStore<Scalar>::DataStoreVector_t *data_out
) const
{
using Teuchos::as;
using Teuchos::outArg;
typedef Teuchos::ScalarTraits<Scalar> ST;
TEUCHOS_TEST_FOR_EXCEPTION( nodesSet_ == false, std::logic_error,
"Error!, setNodes must be called before interpolate"
);
#ifdef HAVE_RYTHMOS_DEBUG
// Check that our nodes_ have not changed between the call to setNodes and interpolate
assertNodesUnChanged<Scalar>(*nodes_,*nodes_copy_);
// Assert that the base interpolator preconditions are satisfied
assertBaseInterpolatePreconditions(*nodes_,t_values,data_out);
#endif // HAVE_RYTHMOS_DEBUG
// Output info
const RCP<FancyOStream> out = this->getOStream();
const Teuchos::EVerbosityLevel verbLevel = this->getVerbLevel();
Teuchos::OSTab ostab(out,1,"CSI::interpolator");
if ( as<int>(verbLevel) >= as<int>(Teuchos::VERB_HIGH) ) {
*out << "nodes_:" << std::endl;
for (Teuchos::Ordinal i=0 ; i<(*nodes_).size() ; ++i) {
*out << "nodes_[" << i << "] = " << std::endl;
(*nodes_)[i].describe(*out,Teuchos::VERB_EXTREME);
}
*out << "t_values = " << std::endl;
for (Teuchos::Ordinal i=0 ; i<t_values.size() ; ++i) {
*out << "t_values[" << i << "] = " << t_values[i] << std::endl;
}
}
data_out->clear();
// Return immediately if no time points are requested ...
if (t_values.size() == 0) {
return;
}
if ((*nodes_).size() == 1) {
// trivial case of one node. Preconditions assert that t_values[0] ==
// (*nodes_)[0].time so we can just pass it out
DataStore<Scalar> DS((*nodes_)[0]);
data_out->push_back(DS);
}
else { // (*nodes_).size() >= 2
int n = 0; // index into t_values
// Loop through all of the time interpolation points in the buffer and
// satisfiy all of the requested time points that you find. NOTE: The
// loop will be existed once all of the time points are satisified (see
// return below).
for (Teuchos::Ordinal i=0 ; i < (*nodes_).size()-1; ++i) {
const Scalar& ti = (*nodes_)[i].time;
const Scalar& tip1 = (*nodes_)[i+1].time;
const TimeRange<Scalar> range_i(ti,tip1);
// For the interpolation range of [ti,tip1], satisify all of the
// requested points in this range.
while ( range_i.isInRange(t_values[n]) ) {
// First we check for exact node matches:
if (compareTimeValues(t_values[n],ti)==0) {
DataStore<Scalar> DS((*nodes_)[i]);
data_out->push_back(DS);
}
else if (compareTimeValues(t_values[n],tip1)==0) {
DataStore<Scalar> DS((*nodes_)[i+1]);
data_out->push_back(DS);
} else {
if (!splineCoeffComputed_) {
computeCubicSplineCoeff<Scalar>(*nodes_,outArg(splineCoeff_));
splineCoeffComputed_ = true;
}
DataStore<Scalar> DS;
RCP<Thyra::VectorBase<Scalar> > x = createMember((*nodes_)[i].x->space());
evaluateCubicSpline<Scalar>( splineCoeff_, i, t_values[n], outArg(*x) );
DS.time = t_values[n];
DS.x = x;
DS.accuracy = ST::zero();
data_out->push_back(DS);
}
// Move to the next user time point to consider!
n++;
if (n == as<int>(t_values.size())) {
// WE ARE ALL DONE! MOVE OUT!
return;
}
}
// Move on the the next interpolation time range
}
} // (*nodes_).size() == 1
}
示例8: main
int main(int argc, char *argv[])
{
using std::endl;
typedef double Scalar;
typedef double ScalarMag;
using Teuchos::describe;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcp_implicit_cast;
using Teuchos::rcp_dynamic_cast;
using Teuchos::as;
using Teuchos::ParameterList;
using Teuchos::CommandLineProcessor;
typedef Teuchos::ParameterList::PrintOptions PLPrintOptions;
typedef Thyra::ModelEvaluatorBase MEB;
using Thyra::createMember;
using Thyra::createMembers;
bool success = true;
Teuchos::GlobalMPISession mpiSession(&argc,&argv);
RCP<Epetra_Comm> epetra_comm;
#ifdef HAVE_MPI
epetra_comm = rcp( new Epetra_MpiComm(MPI_COMM_WORLD) );
#else
epetra_comm = rcp( new Epetra_SerialComm );
#endif // HAVE_MPI
RCP<Teuchos::FancyOStream>
out = Teuchos::VerboseObjectBase::getDefaultOStream();
try {
//
// A) Read commandline options
//
CommandLineProcessor clp;
clp.throwExceptions(false);
clp.addOutputSetupOptions(true);
std::string paramsFileName = "";
clp.setOption( "params-file", ¶msFileName,
"File name for XML parameters" );
std::string extraParamsString = "";
clp.setOption( "extra-params", &extraParamsString,
"Extra XML parameter string" );
Teuchos::EVerbosityLevel verbLevel = Teuchos::VERB_DEFAULT;
setVerbosityLevelOption( "verb-level", &verbLevel,
"Top-level verbosity level. By default, this gets deincremented as you go deeper into numerical objects.",
&clp );
double finalTime = 1.0;
clp.setOption( "final-time", &finalTime, "Final time (the inital time)" );
int numTimeSteps = 2;
clp.setOption( "num-time-steps", &numTimeSteps, "Number of time steps" );
bool dumpFinalSolutions = false;
clp.setOption(
"dump-final-solutions", "no-dump-final-solutions", &dumpFinalSolutions,
"Determine if the final solutions are dumpped or not." );
double maxStateError = 1e-6;
clp.setOption( "max-state-error", &maxStateError,
"The maximum allowed error in the integrated state in relation to the exact state solution" );
// ToDo: Read in more parameters
CommandLineProcessor::EParseCommandLineReturn parse_return = clp.parse(argc,argv);
if( parse_return != CommandLineProcessor::PARSE_SUCCESSFUL ) return parse_return;
if ( Teuchos::VERB_DEFAULT == verbLevel )
verbLevel = Teuchos::VERB_LOW;
const Teuchos::EVerbosityLevel
solnVerbLevel = ( dumpFinalSolutions ? Teuchos::VERB_EXTREME : verbLevel );
//
// B) Get the base parameter list that all other parameter lists will be
// read from.
//
RCP<ParameterList> paramList = Teuchos::parameterList();
if (paramsFileName.length())
updateParametersFromXmlFile( paramsFileName, &*paramList );
if (extraParamsString.length())
updateParametersFromXmlString( extraParamsString, &*paramList );
paramList->validateParameters(*getValidParameters());
//
// C) Create the Stratimikos linear solver factories.
//
// Get the linear solve strategy that will be used to solve for the linear
//.........这里部分代码省略.........