当前位置: 首页>>代码示例>>C++>>正文


C++ TetrahedralMesh::ConstructRectangularMesh方法代码示例

本文整理汇总了C++中TetrahedralMesh::ConstructRectangularMesh方法的典型用法代码示例。如果您正苦于以下问题:C++ TetrahedralMesh::ConstructRectangularMesh方法的具体用法?C++ TetrahedralMesh::ConstructRectangularMesh怎么用?C++ TetrahedralMesh::ConstructRectangularMesh使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TetrahedralMesh的用法示例。


在下文中一共展示了TetrahedralMesh::ConstructRectangularMesh方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: archive_dir_base

    void Test2DSimulations() throw(Exception)
    {
        double conductivity_scale = 1;
        double h = 0.01; // cm
        double ode_time_step = 0.005; //ms
        double pde_time_step = 0.01; //ms
        unsigned num_stims = 1;

        TetrahedralMesh<2,2> mesh;
        unsigned num_elem_x = (unsigned)(0.5/h);  // num elements to make 5mm
        unsigned num_elem_y = (unsigned)(0.5/h);  // num elements to make 5mm
        //unsigned num_elem_z = (unsigned)(0.15/h);// Num elements to make 0.3cm
        double pacing_cycle_length = 350;
        double stim_mag = -500000;
        double stim_dur = 3;
        double area = 0.005;

        mesh.ConstructRectangularMesh(num_elem_x, num_elem_y);
        mesh.Scale(h,h); // Get mesh into units of cm.

        std::string archive_dir_base("LongPostprocessing_archives/archive");
        std::string archive_dir_current;

        // Setup
        HeartConfig::Instance()->SetSimulationDuration(pacing_cycle_length); //ms
        HeartConfig::Instance()->SetOutputDirectory("LongPostprocessing");
        HeartConfig::Instance()->SetOutputFilenamePrefix("results");

        // These lines make postprocessing fast or slow.
        HeartConfig::Instance()->SetOdePdeAndPrintingTimeSteps(ode_time_step, pde_time_step, 10); // Leads to 10MB VTK file
        //HeartConfig::Instance()->SetOdePdeAndPrintingTimeSteps(ode_time_step, pde_time_step, 0.01); // Leads to 1GB VTK file

        HeartConfig::Instance()->SetIntracellularConductivities(Create_c_vector(1.4*conductivity_scale*1.171, 1.4*conductivity_scale*1.171));
        HeartConfig::Instance()->SetSurfaceAreaToVolumeRatio(1400.0); // 1/cm
        HeartConfig::Instance()->SetCapacitance(1.0); // uF/cm^2
        HeartConfig::Instance()->SetVisualizeWithMeshalyzer();
#ifdef CHASTE_VTK
        HeartConfig::Instance()->SetVisualizeWithVtk();
#endif

        std::vector<std::pair<double,double> > apds_requested;
        apds_requested.push_back(std::pair<double, double>(90,-30)); //repolarisation percentage and threshold
        HeartConfig::Instance()->SetApdMaps(apds_requested);
//        std::vector<double> excitation_threshold;
//        excitation_threshold.push_back(-30.0);
//        HeartConfig::Instance()->SetUpstrokeTimeMaps(excitation_threshold);
//        HeartConfig::Instance()->SetMaxUpstrokeVelocityMaps(excitation_threshold);

        for (unsigned stim_counter=0; stim_counter < num_stims; stim_counter++ )
        {
            // Load problem
            MonodomainProblem<2> *p_monodomain_problem;
            if (stim_counter==0)
            {
                PointStimulusCellFactory<2> cell_factory(stim_mag, stim_dur, pacing_cycle_length, area);
                p_monodomain_problem = new MonodomainProblem<2>( &cell_factory );
                p_monodomain_problem->SetMesh(&mesh);
                p_monodomain_problem->Initialise();
            }
            else
            {
                p_monodomain_problem = CardiacSimulationArchiver<MonodomainProblem<2> >::Load(archive_dir_current);
            }

            HeartConfig::Instance()->SetSimulationDuration((double) (stim_counter+1)*pacing_cycle_length); //ms

            // set new directories to work from
            std::stringstream stringoutput;
            stringoutput << stim_counter;
            std::string stim_counter_string = stringoutput.str();

            archive_dir_current = archive_dir_base + "_" + stim_counter_string;
            OutputFileHandler archive_directory(archive_dir_current, true); // Clean a folder for new results
            HeartConfig::Instance()->SetOutputFilenamePrefix("results_" + stim_counter_string);

            // Solve problem (this does the postprocessing too when HeartConfig options are set).
            p_monodomain_problem->Solve();

            HeartEventHandler::Headings();
            HeartEventHandler::Report();

            // Save problem to archive
            CardiacSimulationArchiver<MonodomainProblem<2> >::Save(*p_monodomain_problem, archive_dir_current, false);
            std::cout << "Archived to " << archive_dir_current << "\n" << std::flush;

            // Copy the postprocessing results into the archive folders so they aren't wiped.
            std::vector<std::string> files;
            files.push_back("Apd_90_minus_30_Map");
//                files.push_back("MaxUpstrokeVelocityMap_-30");
//                files.push_back("UpstrokeTimeMap_-30");

            for (unsigned i=0; i<files.size(); i++)
            {
                FileFinder file_to_copy(HeartConfig::Instance()->GetOutputDirectory() + "/output/" + files[i] + ".dat", RelativeTo::ChasteTestOutput);
                TS_ASSERT(file_to_copy.IsFile());
                archive_directory.CopyFileTo(file_to_copy);
            }
        }// close for loop
    }//close void Test2dSimulations
开发者ID:Chaste,项目名称:Old-Chaste-svn-mirror,代码行数:99,代码来源:TestLongPostprocessing.hpp


注:本文中的TetrahedralMesh::ConstructRectangularMesh方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。