本文整理汇总了C++中TestData::M方法的典型用法代码示例。如果您正苦于以下问题:C++ TestData::M方法的具体用法?C++ TestData::M怎么用?C++ TestData::M使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TestData
的用法示例。
在下文中一共展示了TestData::M方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Matrix
// copy constructor for batch processing
TestData(const TestData &other, const int startRow, const int n)
{
assert(other.M() > 0);
assert(startRow <= other.M());
assert(n > 0);
if(other.M() > 0 && startRow <= other.M() && n > 0)
{
//m_pXs.reset(new Matrix(n, other.D()));
//m_pXs->noalias() = other.m_pXs->middleRows(startRow, n);
m_pXs.reset(new Matrix(other.m_pXs->middleRows(startRow, n)));
}
}
示例2: Kss
/**
* @brief Self [co]variance matrix between the test data, Kss(Z, Z)
* @param [in] logHyp The log hyperparameters
* - logHyp(0) = \f$\log(l)\f$
* - logHyp(1) = \f$\log(\sigma_f)\f$
* @param [in] testData The test data
* @param [in] fVarianceVector Flag for the return value
* - fVarianceVector = true : return \f$\mathbf{k}_{**} \in \mathbb{R}^{M \times 1}, \mathbf{k}_{**}^i = k(\mathbf{Z}_i, \mathbf{Z}_i)\f$ (default)
* - fVarianceVector = false: return \f$\mathbf{K}_{**} = \mathbf{K}(\mathbf{Z}, \mathbf{Z}) \in \mathbb{R}^{M \times M}\f$,\n
* which can be used for Bayesian Committee Machines.
* @return A matrix pointer\n
* - Mx1 (fVarianceVector == true)
* - MxM (fVarianceVector == false)\n
* M: The number of test data
*/
static MatrixPtr Kss(const Hyp &logHyp,
const TestData<Scalar> &testData,
const bool fVarianceVector = true)
{
// The number of test data
const int M = testData.M();
// Some constant values
const Scalar sigma_f2 = exp(static_cast<Scalar>(2.0) * logHyp(1)); // sigma_f^2
// Output
MatrixPtr pKss;
// K: self-variance vector (Mx1)
if(fVarianceVector)
{
// k(z, z) = sigma_f^2
pKss.reset(new Matrix(M, 1));
pKss->fill(sigma_f2);
}
// K: self-covariance matrix (MxM)
else
{
// K(r)
MatrixPtr pAbsDistXsXs = PairwiseOp<Scalar>::sqDist(testData.pXs()); // MxM
pAbsDistXsXs->noalias() = pAbsDistXsXs->cwiseSqrt();
pKss = K(logHyp, pAbsDistXsXs);
}
return pKss;
}
示例3: pDeltaXXs
/**
* @brief Gets the cross differences between the training and test inputs.
* @param [in] pXs The M test inputs
* @param [in] coord Corresponding coordinate
* @return An matrix pointer
* \f[
* \mathbf{D} \in \mathbb{R}^{N \times M}, \quad
* \mathbf{D}_{ij} = \mathbf{x}_i^c - \mathbf{z}_j^c
* \f]
* @todo Include this matrix as a member variable like m_pDeltaXXList
*/
MatrixPtr pDeltaXXs(const TestData<Scalar> &testData, const int coord) const
{
assert(m_pX && testData.M() > 0);
assert(D() == testData.D());
return PairwiseOp<Scalar>::delta(m_pX, testData.pXs(), coord); // NxM
}
示例4: pSqDistXXs
/**
* @brief Gets the cross squared distances between the training and test inputs
* @param [in] pXs The M test inputs
* @return An matrix pointer
* \f[
* \mathbf{R^2} \in \mathbb{R}^{N \times M}, \quad
* \mathbf{R^2}_{ij} = (\mathbf{x}_i - \mathbf{z}_j)^\text{T}(\mathbf{x}_i - \mathbf{z}_j)
* \f]
* @todo Include this matrix as a member variable like m_pSqDistXX
*/
MatrixPtr pSqDistXXs(const TestData<Scalar> &testData) const
{
assert(m_pX && testData.M() > 0);
assert(D() == testData.D());
return PairwiseOp<Scalar>::sqDist(m_pX, testData.pXs()); // NxM
}