本文整理汇总了C++中TaskSet::end方法的典型用法代码示例。如果您正苦于以下问题:C++ TaskSet::end方法的具体用法?C++ TaskSet::end怎么用?C++ TaskSet::end使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TaskSet
的用法示例。
在下文中一共展示了TaskSet::end方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: staticStrongAnalysis
bool AffinityTask::staticStrongAnalysis(const TaskSet& taskSet, Time overhead)
{
AffinityTask::Compare compare;
std::unordered_map<AffinityTask*, Time> responseTime;
Affinity allCPU;
for(AffinityTask* task : taskSet)
{
responseTime.insert(std::pair<AffinityTask*, Time>(task, task->worstExecution));
for(auto cpu : task->affinity)
allCPU.insert(cpu);
}
while(true)
{
bool changed = false;
bool overflow = false;
std::unordered_map<AffinityTask*, Time> newResponseTime;
for(auto current : responseTime)
{
AffinityTask* curTask = current.first;
std::set<Affinity> powerSet = AffinityTask::powerSet(curTask->affinity);
Time currentResponse = responseTime.find(curTask)->second;
TaskSet ignoreTask;
ignoreTask.insert(curTask);
Time min_sumInterfere = std::numeric_limits<Time>::max();
for(Affinity s : powerSet)
{
assert(s.size() != 0);
Size s_Size = s.size();
//Time sumInterference = 0;
std::unordered_map<CPUID, std::list<TaskSet>> possibleReplacement;
for(auto cpu : s)
{
possibleReplacement.insert(std::pair<CPUID, std::list<TaskSet>>
(cpu, std::list<TaskSet>()));
}
for(CPUID selectedCPU : s)
{
Affinity ignoreCPU(s);
ignoreCPU.erase(selectedCPU);
for(auto alternative : allCPU)
{
if(ignoreCPU.find(alternative) != ignoreCPU.end())
continue;
auto allPaths = allPath(taskSet, selectedCPU, alternative, ignoreCPU, ignoreTask);
for(auto path : allPaths)
{
if(path.size() > 0)
{
TaskSet ignoredTask;
Affinity moreCheck;
for(auto item : path)
{
if(item.isTask())
ignoredTask.insert(item.getTask());
else
moreCheck.insert(item.getCPUID());
}
TaskSet highTaskSet;
for(AffinityTask* highPriorityTask : taskSet)
{
//if(compare(curTask, highPriorityTask))
// continue;
if(highPriorityTask == curTask)
continue;
if(ignoredTask.find(highPriorityTask) != ignoredTask.end())
continue;
bool intersect = false;
for(auto cpu : highPriorityTask->affinity)
{
if(moreCheck.find(cpu) != moreCheck.end())
{
intersect = true;
break;
}
}
if(!intersect)
continue;
highTaskSet.insert(highPriorityTask);
}
possibleReplacement.find(selectedCPU)->second.push_back(highTaskSet);
}
}
}
}
for(auto possibleSet : combinePossibleTaskSet(possibleReplacement))
{
Time sumInterference = 0;
/*
if(possibleSet.size() ==0)
continue;
assert(possibleSet.size() > 0);
//.........这里部分代码省略.........
示例2: Visit_Node
void TrueTimeSourceVisitor::Visit_Node( const Semantics::Node & node ) {
// Setup the node name
std::string kernelName = node.name();
std::string kernelInitName = kernelName + "_init";
DEBUGOUT( "\tNode: " << kernelName << std::endl );
// Must be the second pass
_SchedHeaderLines.push_back( string( "// Define Schedule Offsets and Durations" ) );
_SchedHeaderLines.push_back( string( "" ) );
// Create the file name
std::string filename = std::string( node.name() ) + "_init";
// Create the hyperperiod symbol string for the node
std::string hyp_str = kernelName + "_HYPERPERIOD";
// Set some dictionary items for this node
GetMainDictionary().SetValue( "FILENAME", filename );
GetMainDictionary().SetValue( "KERNEL_SCHEDULE", "prioFP" );
GetMainDictionary().SetFormattedValue( "KERNEL_HYPERPERIOD", "%f", (double) node.hyperperiodsecs() );
GetMainDictionary().SetValue( "NODE_HYPERPERIOD_STR", hyp_str );
DeviceSet devices = node.integrates();
for ( DeviceSet::iterator devIter = devices.begin(); devIter != devices.end(); devIter++ )
{
if ( (*devIter).type() == Semantics::CommInterface::meta )
{
Semantics::CommInterface ci = Semantics::CommInterface::Cast( *devIter );
Semantics::CommMedium cm = ci.commMedium();
if ( cm != Udm::null ) {
string busname = cm.name();
AddSectionDictionary( "BUS_DEFINES" );
GetTemplateDictionary().SetValue( "BUSNAME", busname );
PopSectionDictionary();
}
}
}
if ( _SchedHeaderLines.size() < 4 )
{
ostringstream out;
out << "#define " << hyp_str << " " << (double)node.hyperperiodsecs();
_SchedHeaderLines.push_back( out.str() );
}
_already_included.clear(); // clear include list for each node
// Visit all tasks assigned to this node
TaskSet taskSet = node.executes();
TaskVector taskVector( taskSet.begin(), taskSet.end() );
TaskVector::iterator taskIter = taskVector.begin();
for ( ; taskIter != taskVector.end(); taskIter++ ){
// Visit the task
taskIter->Accept( *this );
}
// Clear the analog in/out counters
_analogIn = 1;
_analogOut = 1;
// Set up a sorted list of IChans and OChans
SortedIChan_ByChanIndex_Set ichans;
SortedOChan_ByChanIndex_Set ochans;
// Visit all devices contained in this node
DeviceSet deviceSet = node.integrates();
DeviceSet::iterator deviceIter = deviceSet.begin();
for ( ; deviceIter != deviceSet.end(); deviceIter++ ) {
// Collect all of the IChans and OChans, and keep them in the proper sorted order
// See if device is input
if ( Semantics::InputDevice::meta == (*deviceIter).type() ) {
// Cast to an InputDevice
Semantics::InputDevice input = Semantics::InputDevice::Cast( *deviceIter );
// Get the associated IChans
SortedIChan_ByChanIndex_Set iChanSet = input.inputChannels_sorted( IChanIndexSorter() );
ichans.insert( iChanSet.begin(), iChanSet.end() );
}
// See if device is output
else if ( Semantics::OutputDevice::meta == (*deviceIter).type() ) {
// Cast to an InputDevice
Semantics::OutputDevice output = Semantics::OutputDevice::Cast( *deviceIter );
// Get the associated OChans
SortedOChan_ByChanIndex_Set oChanSet = output.outputChannels_sorted( OChanIndexSorter() );
ochans.insert( oChanSet.begin(), oChanSet.end() );
}
}
// Now process the IChans and OChans in order
IChanVector iChanVector( ichans.begin(), ichans.end() );
for ( IChanVector::iterator ichanIter = iChanVector.begin(); ichanIter != iChanVector.end(); ichanIter++ )
//.........这里部分代码省略.........
示例3: affinityCopy
std::list<GraphNode> AffinityTask::BFS(const TaskSet& taskSet, const GraphNode& start, const GraphNode& target, const Affinity& excludeID, const TaskSet& excludeTask)
{
std::list<GraphNode> returnList;
//prepare link map
std::unordered_map<CPUID, TaskSet> cpuToTaskList;
std::unordered_map<AffinityTask*, Affinity> taskToCPUList;
for(auto task : taskSet)
{
if(excludeTask.find(task) != excludeTask.end())
continue;
Affinity affinityCopy(task->affinity);
for(auto cpu : excludeID)
affinityCopy.erase(cpu);
taskToCPUList.insert(std::pair<AffinityTask*, Affinity>(task, affinityCopy));
for(CPUID cpu : affinityCopy)
{
if(cpuToTaskList.find(cpu) == cpuToTaskList.end())
cpuToTaskList.insert(std::pair<CPUID, TaskSet>(cpu, TaskSet()));
cpuToTaskList.find(cpu)->second.insert(task);
}
}
//procedure BFS(G,v) is
std::unordered_map<CPUID, AffinityTask*> cpuToPrevTask;
std::unordered_map<AffinityTask*, CPUID> taskToPrevCPU;
bool reachable = false;
std::queue<GraphNode> queue;//create a queue Q, true is Job, false is processor
std::unordered_set<CPUID> visitedCPU; //create a set V
std::unordered_set<AffinityTask*> visitedTask; //create a set V
if(start.isTask())
visitedTask.insert(start.getTask()); //add v to V
else
visitedCPU.insert(start.getCPUID());
queue.push(start); //enqueue v onto Q
while(!queue.empty())//while Q is not empty loop
{
auto currentItem = queue.front(); //t ← Q.dequeue()
queue.pop();
if(currentItem.isTask())
{
if(target.isTask())
if(target.getTask() == currentItem.getTask()) //if t is what we are looking for then
{
//return t
reachable = true;
break;
}
}
else
{
if(!target.isTask())
if(target.getCPUID() == currentItem.getCPUID()) //if t is what we are looking for then
{
//return t
reachable = true;
break;
}
}
//for all edges e in G.adjacentEdges(t) loop
if(currentItem.isTask())
{
AffinityTask* curTask = currentItem.getTask();
assert(curTask != nullptr);
for(CPUID adjacentCPU : taskToCPUList.find(curTask)->second) //u ← G.adjacentVertex(t,e)
{
if(visitedCPU.find(adjacentCPU) == visitedCPU.end()) //if u is not in V then
{
visitedCPU.insert(adjacentCPU); //add u to V
queue.push(GraphNode(adjacentCPU)); //enqueue u onto Q
assert(cpuToPrevTask.find(adjacentCPU) == cpuToPrevTask.end());
cpuToPrevTask.insert(std::pair<CPUID,AffinityTask*>(adjacentCPU, curTask));
}
}
}
else
{
CPUID curCPU = currentItem.getCPUID();
auto iter = cpuToTaskList.find(curCPU);
if(iter == cpuToTaskList.end())
{
continue;
}
assert(iter->second.size() > 0);
for(AffinityTask* adjacentTask : iter->second) //u ← G.adjacentVertex(t,e)
{
if(visitedTask.find(adjacentTask) == visitedTask.end())
{
visitedTask.insert(adjacentTask);
queue.push(GraphNode(adjacentTask));
assert(taskToPrevCPU.find(adjacentTask) == taskToPrevCPU.end());
//.........这里部分代码省略.........