本文整理汇总了C++中TargetPhrase::GetSize方法的典型用法代码示例。如果您正苦于以下问题:C++ TargetPhrase::GetSize方法的具体用法?C++ TargetPhrase::GetSize怎么用?C++ TargetPhrase::GetSize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TargetPhrase
的用法示例。
在下文中一共展示了TargetPhrase::GetSize方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Evaluate_All_Substrings
void CacheBasedLanguageModel::Evaluate_All_Substrings(const TargetPhrase& tp, ScoreComponentCollection* out) const
{
//VERBOSE(1,"CacheBasedLanguageModel::Evaluate_All_Substrings" << std::endl);
//loop over all n-grams in the TargetPhrase (no matter of n)
// and compute the decaying_score for all words
// and return their sum
decaying_cache_t::const_iterator it;
float score = 0.0;
size_t tp_size = tp.GetSize();
for (size_t startpos = 0 ; startpos < tp_size ; ++startpos) {
std::string w = "";
for (size_t endpos = startpos; endpos < tp_size ; ++endpos) {
if (endpos > startpos){ w += " "; }
w += tp.GetWord(endpos).GetFactor(0)->GetString();
it = m_cache.find(w);
float tmpsc;
if (it != m_cache.end()) //found!
{
tmpsc = ((*it).second).second;
VERBOSE(3,"cblm::Evaluate: found w:|" << w << "| score:|" << tmpsc << "|" << std::endl);
}
else{
tmpsc = precomputedScores[maxAge]; // one score per phrase table
VERBOSE(3,"cblm::Evaluate: not found w:|" << w << "| score:|" << tmpsc << "|" << std::endl);
}
score += ( tmpsc / ( tp_size + startpos - endpos ) );
VERBOSE(3,"cblm::Evaluate: actual score:|" << score << "|" << std::endl);
}
}
VERBOSE(3,"cblm::Evaluate: phrase:|" << tp << "| score:|" << score << "|" << std::endl);
out->PlusEquals(this, score);
}
示例2: EvaluateInIsolation
void PhraseLengthFeature::EvaluateInIsolation(const Phrase &source
, const TargetPhrase &targetPhrase
, ScoreComponentCollection &scoreBreakdown
, ScoreComponentCollection &estimatedFutureScore) const
{
// get length of source and target phrase
size_t targetLength = targetPhrase.GetSize();
size_t sourceLength = source.GetSize();
// create feature names
stringstream nameSource;
nameSource << "s" << sourceLength;
stringstream nameTarget;
nameTarget << "t" << targetLength;
stringstream nameBoth;
nameBoth << sourceLength << "," << targetLength;
// increase feature counts
scoreBreakdown.PlusEquals(this,nameSource.str(),1);
scoreBreakdown.PlusEquals(this,nameTarget.str(),1);
scoreBreakdown.PlusEquals(this,nameBoth.str(),1);
//cerr << nameSource.str() << " " << nameTarget.str() << " " << nameBoth.str() << endl;
}
示例3: ScorePhrase
float GlobalLexicalModel::ScorePhrase( const TargetPhrase& targetPhrase ) const
{
const Sentence& input = *(m_local->input);
float score = 0;
for(size_t targetIndex = 0; targetIndex < targetPhrase.GetSize(); targetIndex++ ) {
float sum = 0;
const Word& targetWord = targetPhrase.GetWord( targetIndex );
VERBOSE(2,"glm " << targetWord << ": ");
const DoubleHash::const_iterator targetWordHash = m_hash.find( &targetWord );
if( targetWordHash != m_hash.end() ) {
SingleHash::const_iterator inputWordHash = targetWordHash->second.find( m_bias );
if( inputWordHash != targetWordHash->second.end() ) {
VERBOSE(2,"*BIAS* " << inputWordHash->second);
sum += inputWordHash->second;
}
set< const Word*, WordComparer > alreadyScored; // do not score a word twice
for(size_t inputIndex = 0; inputIndex < input.GetSize(); inputIndex++ ) {
const Word& inputWord = input.GetWord( inputIndex );
if ( alreadyScored.find( &inputWord ) == alreadyScored.end() ) {
SingleHash::const_iterator inputWordHash = targetWordHash->second.find( &inputWord );
if( inputWordHash != targetWordHash->second.end() ) {
VERBOSE(2," " << inputWord << " " << inputWordHash->second);
sum += inputWordHash->second;
}
alreadyScored.insert( &inputWord );
}
}
}
// Hal Daume says: 1/( 1 + exp [ - sum_i w_i * f_i ] )
VERBOSE(2," p=" << FloorScore( log(1/(1+exp(-sum))) ) << endl);
score += FloorScore( log(1/(1+exp(-sum))) );
}
return score;
}
示例4: ComputeFeatures
void SourceWordDeletionFeature::ComputeFeatures(const Phrase &source,
const TargetPhrase& targetPhrase,
ScoreComponentCollection* accumulator,
const AlignmentInfo &alignmentInfo) const
{
// handle special case: unknown words (they have no word alignment)
size_t targetLength = targetPhrase.GetSize();
size_t sourceLength = source.GetSize();
if (targetLength == 1 && sourceLength == 1 && !alignmentInfo.GetSize()) return;
// flag aligned words
bool aligned[16];
CHECK(sourceLength < 16);
for(size_t i=0; i<sourceLength; i++)
aligned[i] = false;
for (AlignmentInfo::const_iterator alignmentPoint = alignmentInfo.begin(); alignmentPoint != alignmentInfo.end(); alignmentPoint++)
aligned[ alignmentPoint->first ] = true;
// process unaligned source words
for(size_t i=0; i<sourceLength; i++) {
if (!aligned[i]) {
const Word &w = source.GetWord(i);
if (!w.IsNonTerminal()) {
const StringPiece word = w.GetFactor(m_factorType)->GetString();
if (word != "<s>" && word != "</s>") {
if (!m_unrestricted && FindStringPiece(m_vocab, word ) == m_vocab.end()) {
accumulator->PlusEquals(this, StringPiece("OTHER"),1);
} else {
accumulator->PlusEquals(this,word,1);
}
}
}
}
}
}
示例5: Evaluate_Whole_String
void CacheBasedLanguageModel::Evaluate_Whole_String(const TargetPhrase& tp, ScoreComponentCollection* out) const
{
//VERBOSE(1,"CacheBasedLanguageModel::Evaluate_Whole_String" << std::endl);
//consider all words in the TargetPhrase as one n-gram
// and compute the decaying_score for all words
// and return their sum
decaying_cache_t::const_iterator it;
float score = 0.0;
std::string w = "";
size_t endpos = tp.GetSize();
for (size_t pos = 0 ; pos < endpos ; ++pos) {
if (pos > 0){ w += " "; }
w += tp.GetWord(pos).GetFactor(0)->GetString();
}
it = m_cache.find(w);
if (it != m_cache.end()) //found!
{
score = ((*it).second).second;
VERBOSE(3,"cblm::Evaluate: found w:|" << w << "| score:|" << score << "|" << std::endl);
}
else{
score = precomputedScores[maxAge]; // one score per phrase table
VERBOSE(3,"cblm::Evaluate: not found w:|" << w << "| score:|" << score << "|" << std::endl);
}
VERBOSE(3,"cblm::Evaluate: phrase:|" << tp << "| score:|" << score << "|" << std::endl);
out->PlusEquals(this, score);
}
示例6: edge
template <class Model> void Fill<Model>::AddPhraseOOV(TargetPhrase &phrase, std::list<TargetPhraseCollection*> &, const WordsRange &)
{
std::vector<lm::WordIndex> words;
CHECK(phrase.GetSize() <= 1);
if (phrase.GetSize())
words.push_back(Convert(phrase.GetWord(0)));
search::PartialEdge edge(edges_.AllocateEdge(0));
// Appears to be a bug that FutureScore does not already include language model.
search::ScoreRuleRet scored(search::ScoreRule(context_.LanguageModel(), words, edge.Between()));
edge.SetScore(phrase.GetFutureScore() + scored.prob * context_.LMWeight() + static_cast<search::Score>(scored.oov) * oov_weight_);
search::Note note;
note.vp = &phrase;
edge.SetNote(note);
edges_.AddEdge(edge);
}
示例7: myBitmap
void OpSequenceModel:: Evaluate(const Phrase &source
, const TargetPhrase &targetPhrase
, ScoreComponentCollection &scoreBreakdown
, ScoreComponentCollection &estimatedFutureScore) const
{
osmHypothesis obj;
obj.setState(OSM->NullContextState());
WordsBitmap myBitmap(source.GetSize());
vector <string> mySourcePhrase;
vector <string> myTargetPhrase;
vector<float> scores(5);
vector <int> alignments;
int startIndex = 0;
int endIndex = source.GetSize();
const AlignmentInfo &align = targetPhrase.GetAlignTerm();
AlignmentInfo::const_iterator iter;
for (iter = align.begin(); iter != align.end(); ++iter) {
alignments.push_back(iter->first);
alignments.push_back(iter->second);
}
for (int i = 0; i < targetPhrase.GetSize(); i++) {
if (targetPhrase.GetWord(i).IsOOV())
myTargetPhrase.push_back("_TRANS_SLF_");
else
myTargetPhrase.push_back(targetPhrase.GetWord(i).GetFactor(0)->GetString().as_string());
}
for (int i = 0; i < source.GetSize(); i++) {
mySourcePhrase.push_back(source.GetWord(i).GetFactor(0)->GetString().as_string());
}
obj.setPhrases(mySourcePhrase , myTargetPhrase);
obj.constructCepts(alignments,startIndex,endIndex-1,targetPhrase.GetSize());
obj.computeOSMFeature(startIndex,myBitmap);
obj.calculateOSMProb(*OSM);
obj.populateScores(scores);
estimatedFutureScore.PlusEquals(this, scores);
}
示例8: TransformScore
void Model1Feature::EvaluateWithSourceContext(const InputType &input
, const InputPath &inputPath
, const TargetPhrase &targetPhrase
, const StackVec *stackVec
, ScoreComponentCollection &scoreBreakdown
, ScoreComponentCollection *estimatedFutureScore) const
{
const Sentence& sentence = static_cast<const Sentence&>(input);
float score = 0.0;
float norm = TransformScore(1+sentence.GetSize());
for (size_t posT=0; posT<targetPhrase.GetSize(); ++posT) {
const Word &wordT = targetPhrase.GetWord(posT);
if ( !wordT.IsNonTerminal() ) {
float thisWordProb = m_model1.GetProbability(m_emptyWord,wordT[0]); // probability conditioned on empty word
// cache lookup
bool foundInCache = false;
{
#ifdef WITH_THREADS
boost::shared_lock<boost::shared_mutex> read_lock(m_accessLock);
#endif
boost::unordered_map<const InputType*, boost::unordered_map<const Factor*, float> >::const_iterator sentenceCache = m_cache.find(&input);
if (sentenceCache != m_cache.end()) {
boost::unordered_map<const Factor*, float>::const_iterator cacheHit = sentenceCache->second.find(wordT[0]);
if (cacheHit != sentenceCache->second.end()) {
foundInCache = true;
score += cacheHit->second;
FEATUREVERBOSE(3, "Cached score( " << wordT << " ) = " << cacheHit->second << std::endl);
}
}
}
if (!foundInCache) {
for (size_t posS=1; posS<sentence.GetSize()-1; ++posS) { // ignore <s> and </s>
const Word &wordS = sentence.GetWord(posS);
float modelProb = m_model1.GetProbability(wordS[0],wordT[0]);
FEATUREVERBOSE(4, "p( " << wordT << " | " << wordS << " ) = " << modelProb << std::endl);
thisWordProb += modelProb;
}
float thisWordScore = TransformScore(thisWordProb) - norm;
FEATUREVERBOSE(3, "score( " << wordT << " ) = " << thisWordScore << std::endl);
{
#ifdef WITH_THREADS
// need to update cache; write lock
boost::unique_lock<boost::shared_mutex> lock(m_accessLock);
#endif
m_cache[&input][wordT[0]] = thisWordScore;
}
score += thisWordScore;
}
}
}
scoreBreakdown.PlusEquals(this, score);
}
示例9: Evaluate
void CountNonTerms::Evaluate(const Phrase &sourcePhrase
, const TargetPhrase &targetPhrase
, ScoreComponentCollection &scoreBreakdown
, ScoreComponentCollection &estimatedFutureScore) const
{
const StaticData &staticData = StaticData::Instance();
vector<float> scores(m_numScoreComponents, 0);
size_t indScore = 0;
if (m_all) {
for (size_t i = 0; i < targetPhrase.GetSize(); ++i) {
const Word &word = targetPhrase.GetWord(i);
if (word.IsNonTerminal()) {
++scores[indScore];
}
}
++indScore;
}
if (m_targetSyntax) {
for (size_t i = 0; i < targetPhrase.GetSize(); ++i) {
const Word &word = targetPhrase.GetWord(i);
if (word.IsNonTerminal() && word != staticData.GetOutputDefaultNonTerminal()) {
++scores[indScore];
}
}
++indScore;
}
if (m_sourceSyntax) {
for (size_t i = 0; i < sourcePhrase.GetSize(); ++i) {
const Word &word = sourcePhrase.GetWord(i);
if (word.IsNonTerminal() && word != staticData.GetInputDefaultNonTerminal()) {
++scores[indScore];
}
}
++indScore;
}
scoreBreakdown.PlusEquals(this, scores);
}
示例10: EvaluateInIsolation
void RulePairUnlexicalizedSource::EvaluateInIsolation(const Phrase &source
, const TargetPhrase &targetPhrase
, ScoreComponentCollection &scoreBreakdown
, ScoreComponentCollection &estimatedFutureScore) const
{
const Factor* targetPhraseLHS = targetPhrase.GetTargetLHS()[0];
if ( !m_glueRules && (targetPhraseLHS == m_glueTargetLHS) ) {
return;
}
if ( !m_nonGlueRules && (targetPhraseLHS != m_glueTargetLHS) ) {
return;
}
for (size_t posS=0; posS<source.GetSize(); ++posS) {
const Word &wordS = source.GetWord(posS);
if ( !wordS.IsNonTerminal() ) {
return;
}
}
ostringstream namestr;
for (size_t posT=0; posT<targetPhrase.GetSize(); ++posT) {
const Word &wordT = targetPhrase.GetWord(posT);
const Factor* factorT = wordT[0];
if ( wordT.IsNonTerminal() ) {
namestr << "[";
}
namestr << factorT->GetString();
if ( wordT.IsNonTerminal() ) {
namestr << "]";
}
namestr << "|";
}
namestr << targetPhraseLHS->GetString() << "|";
for (AlignmentInfo::const_iterator it=targetPhrase.GetAlignNonTerm().begin();
it!=targetPhrase.GetAlignNonTerm().end(); ++it) {
namestr << "|" << it->first << "-" << it->second;
}
scoreBreakdown.PlusEquals(this, namestr.str(), 1);
if ( targetPhraseLHS != m_glueTargetLHS ) {
scoreBreakdown.PlusEquals(this, 1);
}
}
示例11: ComputeFeatures
void TargetWordInsertionFeature::ComputeFeatures(const TargetPhrase& targetPhrase,
ScoreComponentCollection* accumulator,
const AlignmentInfo::CollType &alignment) const
{
// handle special case: unknown words (they have no word alignment)
size_t targetLength = targetPhrase.GetSize();
size_t sourceLength = targetPhrase.GetSourcePhrase().GetSize();
if (targetLength == 1 && sourceLength == 1) {
const Factor* f1 = targetPhrase.GetWord(0).GetFactor(1);
if (f1 && f1->GetString().compare(UNKNOWN_FACTOR) == 0) {
return;
}
}
// flag aligned words
bool aligned[16];
CHECK(targetLength < 16);
for(size_t i=0; i<targetLength; i++) {
aligned[i] = false;
}
for (AlignmentInfo::const_iterator alignmentPoint = alignment.begin(); alignmentPoint != alignment.end(); alignmentPoint++) {
aligned[ alignmentPoint->second ] = true;
}
// process unaligned target words
for(size_t i=0; i<targetLength; i++) {
if (!aligned[i]) {
Word w = targetPhrase.GetWord(i);
if (!w.IsNonTerminal()) {
const string &word = w.GetFactor(m_factorType)->GetString();
if (word != "<s>" && word != "</s>") {
if (!m_unrestricted && m_vocab.find( word ) == m_vocab.end()) {
accumulator->PlusEquals(this,"OTHER",1);
}
else {
accumulator->PlusEquals(this,word,1);
}
}
}
}
}
}
示例12: Evaluate
void LM::Evaluate(const Phrase &source
, const TargetPhrase &targetPhrase
, Scores &scores
, Scores &estimatedFutureScore) const
{
SCORE all = 0, ngram = 0;
PhraseVec phraseVec;
phraseVec.reserve(m_order);
for (size_t pos = 0; pos < targetPhrase.GetSize(); ++pos) {
const Word &word = targetPhrase.GetWord(pos);
ShiftOrPush(phraseVec, word);
SCORE score = GetValueCache(phraseVec);
all += score;
if (phraseVec.size() == m_order) {
ngram += score;
}
}
SCORE estimated = all - ngram;
scores.Add(*this, ngram);
estimatedFutureScore.Add(*this, estimated);
}
示例13: DecodeCollection
TargetPhraseVectorPtr PhraseDecoder::DecodeCollection(
TargetPhraseVectorPtr tpv, BitWrapper<> &encodedBitStream,
const Phrase &sourcePhrase, bool topLevel)
{
bool extending = tpv->size();
size_t bitsLeft = encodedBitStream.TellFromEnd();
typedef std::pair<size_t, size_t> AlignPointSizeT;
std::vector<int> sourceWords;
if(m_coding == REnc)
{
for(size_t i = 0; i < sourcePhrase.GetSize(); i++)
{
std::string sourceWord
= sourcePhrase.GetWord(i).GetString(*m_input, false);
unsigned idx = GetSourceSymbolId(sourceWord);
sourceWords.push_back(idx);
}
}
unsigned phraseStopSymbol = 0;
AlignPoint alignStopSymbol(-1, -1);
std::vector<float> scores;
std::set<AlignPointSizeT> alignment;
enum DecodeState { New, Symbol, Score, Alignment, Add } state = New;
size_t srcSize = sourcePhrase.GetSize();
TargetPhrase* targetPhrase = NULL;
while(encodedBitStream.TellFromEnd())
{
if(state == New)
{
// Creating new TargetPhrase on the heap
tpv->push_back(TargetPhrase(Output));
targetPhrase = &tpv->back();
targetPhrase->SetSourcePhrase(sourcePhrase);
alignment.clear();
scores.clear();
state = Symbol;
}
if(state == Symbol)
{
unsigned symbol = m_symbolTree->Read(encodedBitStream);
if(symbol == phraseStopSymbol)
{
state = Score;
}
else
{
if(m_coding == REnc)
{
std::string wordString;
size_t type = GetREncType(symbol);
if(type == 1)
{
unsigned decodedSymbol = DecodeREncSymbol1(symbol);
wordString = GetTargetSymbol(decodedSymbol);
}
else if (type == 2)
{
size_t rank = DecodeREncSymbol2Rank(symbol);
size_t srcPos = DecodeREncSymbol2Position(symbol);
if(srcPos >= sourceWords.size())
return TargetPhraseVectorPtr();
wordString = GetTargetSymbol(GetTranslation(sourceWords[srcPos], rank));
if(m_phraseDictionary.m_useAlignmentInfo)
{
size_t trgPos = targetPhrase->GetSize();
alignment.insert(AlignPoint(srcPos, trgPos));
}
}
else if(type == 3)
{
size_t rank = DecodeREncSymbol3(symbol);
size_t srcPos = targetPhrase->GetSize();
if(srcPos >= sourceWords.size())
return TargetPhraseVectorPtr();
wordString = GetTargetSymbol(GetTranslation(sourceWords[srcPos], rank));
if(m_phraseDictionary.m_useAlignmentInfo)
{
size_t trgPos = srcPos;
alignment.insert(AlignPoint(srcPos, trgPos));
}
}
Word word;
//.........这里部分代码省略.........
示例14: EvaluateWithSourceContext
void PhrasePairFeature::EvaluateWithSourceContext(const InputType &input
, const InputPath &inputPath
, const TargetPhrase &targetPhrase
, const StackVec *stackVec
, ScoreComponentCollection &scoreBreakdown
, ScoreComponentCollection *estimatedFutureScore) const
{
const Phrase& source = inputPath.GetPhrase();
if (m_simple) {
ostringstream namestr;
namestr << "pp_";
namestr << source.GetWord(0).GetFactor(m_sourceFactorId)->GetString();
for (size_t i = 1; i < source.GetSize(); ++i) {
const Factor* sourceFactor = source.GetWord(i).GetFactor(m_sourceFactorId);
namestr << ",";
namestr << sourceFactor->GetString();
}
namestr << "~";
namestr << targetPhrase.GetWord(0).GetFactor(m_targetFactorId)->GetString();
for (size_t i = 1; i < targetPhrase.GetSize(); ++i) {
const Factor* targetFactor = targetPhrase.GetWord(i).GetFactor(m_targetFactorId);
namestr << ",";
namestr << targetFactor->GetString();
}
scoreBreakdown.SparsePlusEquals(namestr.str(),1);
}
if (m_domainTrigger) {
const Sentence& isnt = static_cast<const Sentence&>(input);
const bool use_topicid = isnt.GetUseTopicId();
const bool use_topicid_prob = isnt.GetUseTopicIdAndProb();
// compute pair
ostringstream pair;
pair << source.GetWord(0).GetFactor(m_sourceFactorId)->GetString();
for (size_t i = 1; i < source.GetSize(); ++i) {
const Factor* sourceFactor = source.GetWord(i).GetFactor(m_sourceFactorId);
pair << ",";
pair << sourceFactor->GetString();
}
pair << "~";
pair << targetPhrase.GetWord(0).GetFactor(m_targetFactorId)->GetString();
for (size_t i = 1; i < targetPhrase.GetSize(); ++i) {
const Factor* targetFactor = targetPhrase.GetWord(i).GetFactor(m_targetFactorId);
pair << ",";
pair << targetFactor->GetString();
}
if (use_topicid || use_topicid_prob) {
if(use_topicid) {
// use topicid as trigger
const long topicid = isnt.GetTopicId();
stringstream feature;
feature << "pp_";
if (topicid == -1)
feature << "unk";
else
feature << topicid;
feature << "_";
feature << pair.str();
scoreBreakdown.SparsePlusEquals(feature.str(), 1);
} else {
// use topic probabilities
const vector<string> &topicid_prob = *(isnt.GetTopicIdAndProb());
if (atol(topicid_prob[0].c_str()) == -1) {
stringstream feature;
feature << "pp_unk_";
feature << pair.str();
scoreBreakdown.SparsePlusEquals(feature.str(), 1);
} else {
for (size_t i=0; i+1 < topicid_prob.size(); i+=2) {
stringstream feature;
feature << "pp_";
feature << topicid_prob[i];
feature << "_";
feature << pair.str();
scoreBreakdown.SparsePlusEquals(feature.str(), atof((topicid_prob[i+1]).c_str()));
}
}
}
} else {
// range over domain trigger words
const long docid = isnt.GetDocumentId();
for (set<string>::const_iterator p = m_vocabDomain[docid].begin(); p != m_vocabDomain[docid].end(); ++p) {
string sourceTrigger = *p;
ostringstream namestr;
namestr << "pp_";
namestr << sourceTrigger;
namestr << "_";
namestr << pair.str();
scoreBreakdown.SparsePlusEquals(namestr.str(),1);
}
}
}
if (m_sourceContext) {
const Sentence& isnt = static_cast<const Sentence&>(input);
// range over source words to get context
for(size_t contextIndex = 0; contextIndex < isnt.GetSize(); contextIndex++ ) {
//.........这里部分代码省略.........