本文整理汇总了C++中TRnd::GetUniDevInt方法的典型用法代码示例。如果您正苦于以下问题:C++ TRnd::GetUniDevInt方法的具体用法?C++ TRnd::GetUniDevInt怎么用?C++ TRnd::GetUniDevInt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TRnd
的用法示例。
在下文中一共展示了TRnd::GetUniDevInt方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: GenSmallWorld
/// Generates a small-world graph using the Watts-Strogatz model.
/// We assume a circle where each node creates links to NodeOutDeg other nodes.
/// This way at the end each node is connected to 2*NodeOutDeg other nodes.
/// See: Collective dynamics of 'small-world' networks. Watts and Strogatz.
/// URL: http://research.yahoo.com/files/w_s_NATURE_0.pdf
PUNGraph GenSmallWorld(const int& Nodes, const int& NodeOutDeg, const double& RewireProb, TRnd& Rnd) {
THashSet<TIntPr> EdgeSet(Nodes*NodeOutDeg);
IAssertR(Nodes > NodeOutDeg, TStr::Fmt("Insufficient nodes for out degree, %d!", NodeOutDeg));
for (int node = 0; node < Nodes; node++) {
const int src = node;
for (int edge = 1; edge <= NodeOutDeg; edge++) {
int dst = (node+edge) % Nodes; // edge to next neighbor
if (Rnd.GetUniDev() < RewireProb) { // random edge
dst = Rnd.GetUniDevInt(Nodes);
while (dst == src || EdgeSet.IsKey(TIntPr(src, dst))) {
dst = Rnd.GetUniDevInt(Nodes); }
}
EdgeSet.AddKey(TIntPr(src, dst));
}
}
PUNGraph GraphPt = TUNGraph::New();
TUNGraph& Graph = *GraphPt;
Graph.Reserve(Nodes, EdgeSet.Len());
int node;
for (node = 0; node < Nodes; node++) {
IAssert(Graph.AddNode(node) == node);
}
for (int edge = 0; edge < EdgeSet.Len(); edge++) {
Graph.AddEdge(EdgeSet[edge].Val1, EdgeSet[edge].Val2);
}
Graph.Defrag();
return GraphPt;
}
示例2: GenRndBipart
PBPGraph GenRndBipart(const int& LeftNodes, const int& RightNodes, const int& Edges, TRnd& Rnd) {
PBPGraph G = TBPGraph::New();
for (int i = 0; i < LeftNodes; i++) { G->AddNode(i, true); }
for (int i = 0; i < RightNodes; i++) { G->AddNode(LeftNodes+i, false); }
IAssertR(Edges <= LeftNodes*RightNodes, "Too many edges in the bipartite graph!");
for (int edges = 0; edges < Edges; ) {
const int LNId = Rnd.GetUniDevInt(LeftNodes);
const int RNId = LeftNodes + Rnd.GetUniDevInt(RightNodes);
if (G->AddEdge(LNId, RNId) != -2) { edges++; } // is new edge
}
return G;
}
示例3: while
THash<TInt, TInt> * choose_seeds (const PUNGraph g, const int num, const int * infection_state, const int infect) {
THash<TInt, TInt> choices;
THash<TInt, TUNGraph::TNode> nodes;
THash<TInt, TInt> * output = new THash<TInt, TInt> ();
TInt weight = 0;
TInt num_total = 0;
for (TUNGraph::TNodeI n = g->BegNI(); n != g->EndNI(); n++) {
//cout << "nodeID: " << n.GetId() << ",\tStatus: " << infection_state[n.GetId () - 1] << endl;
if (infection_state[n.GetId () - 1] != infect) {
weight += n.GetDeg ();
choices.AddDat (num_total, weight);
nodes.AddDat (num_total, n.GetId());
num_total++;
}
}
// TRnd random ((int) time(NULL));
// TRnd random (0);
TInt num_chosen = 0;
while (num_chosen < num) {
TInt choice = my_random.GetUniDevInt (weight);
TUNGraph::TNode node_choice = nodes[find (choice, choices, 0, num_total-1)];
if (!output->IsKey(node_choice.GetId())) {
num_chosen++;
// cout << node_choice.GetId () << "\n";
output->AddDat(node_choice.GetId (), 1);
}
}
return output;
}
示例4: GetRndNId
int TBPGraph::GetRndNId(TRnd& Rnd) {
const int NNodes = GetNodes();
if (Rnd.GetUniDevInt(NNodes) < GetLNodes()) {
return GetRndLNId(Rnd); }
else {
return GetRndRNId(Rnd); }
}
示例5: GenConfModel
/// Generates a random undirect graph with a given degree sequence DegSeqV.
/// Configuration model operates as follows. For each node N, of degree
/// DeqSeqV[N] we create DeqSeqV[N] spokes (half-edges). We then pick two
/// spokes at random, and connect the spokes endpoints. We continue this
/// process until no spokes are left. Generally this generates a multigraph
/// (i.e., spokes out of same nodes can be chosen multiple times).We ignore
/// (discard) self-loops and multiple edges. Thus, the generated graph will
/// only approximate follow the given degree sequence. The method is very fast!
PUNGraph GenConfModel(const TIntV& DegSeqV, TRnd& Rnd) {
const int Nodes = DegSeqV.Len();
PUNGraph GraphPt = TUNGraph::New();
TUNGraph& Graph = *GraphPt;
Graph.Reserve(Nodes, -1);
TIntV NIdDegV(DegSeqV.Len(), 0);
int DegSum=0, edges=0;
for (int node = 0; node < Nodes; node++) {
Graph.AddNode(node);
for (int d = 0; d < DegSeqV[node]; d++) { NIdDegV.Add(node); }
DegSum += DegSeqV[node];
}
NIdDegV.Shuffle(Rnd);
TIntPrSet EdgeH(DegSum/2); // set of all edges, is faster than graph edge lookup
if (DegSum % 2 != 0) {
printf("Seg seq is odd [%d]: ", DegSeqV.Len());
for (int d = 0; d < TMath::Mn(100, DegSeqV.Len()); d++) { printf(" %d", (int)DegSeqV[d]); }
printf("\n");
}
int u=0, v=0;
for (int c = 0; NIdDegV.Len() > 1; c++) {
u = Rnd.GetUniDevInt(NIdDegV.Len());
while ((v = Rnd.GetUniDevInt(NIdDegV.Len())) == u) { }
if (u > v) { Swap(u, v); }
const int E1 = NIdDegV[u];
const int E2 = NIdDegV[v];
if (v == NIdDegV.Len()-1) { NIdDegV.DelLast(); }
else { NIdDegV[v] = NIdDegV.Last(); NIdDegV.DelLast(); }
if (u == NIdDegV.Len()-1) { NIdDegV.DelLast(); }
else { NIdDegV[u] = NIdDegV.Last(); NIdDegV.DelLast(); }
if (E1 == E2 || EdgeH.IsKey(TIntPr(E1, E2))) { continue; }
EdgeH.AddKey(TIntPr(E1, E2));
Graph.AddEdge(E1, E2);
edges++;
if (c % (DegSum/100+1) == 0) { printf("\r configuration model: iter %d: edges: %d, left: %d", c, edges, NIdDegV.Len()/2); }
}
printf("\n");
return GraphPt;
}
示例6: RndConnectInsideCommunity
void TAGM::RndConnectInsideCommunity(PUNGraph& Graph, const TIntV& CmtyV, const double& Prob, TRnd& Rnd){
int CNodes = CmtyV.Len();
int CEdges = Rnd.GetBinomialDev(Prob,CNodes*(CNodes-1)/2);
THashSet<TIntPr> NewEdgeSet(CEdges);
for (int edge = 0; edge < CEdges; ) {
int SrcNId = CmtyV[Rnd.GetUniDevInt(CNodes)];
int DstNId = CmtyV[Rnd.GetUniDevInt(CNodes)];
if(SrcNId>DstNId){Swap(SrcNId,DstNId);}
if (SrcNId != DstNId && !NewEdgeSet.IsKey(TIntPr(SrcNId,DstNId))) { // is new edge
NewEdgeSet.AddKey(TIntPr(SrcNId,DstNId));
Graph->AddEdge(SrcNId,DstNId);
edge++;
}
}
}
示例7: GenRndGnm
PGraph GenRndGnm(const int& Nodes, const int& Edges, const bool& IsDir, TRnd& Rnd) {
PGraph GraphPt = PGraph::New();
typename PGraph::TObj& Graph = *GraphPt;
Graph.Reserve(Nodes, Edges);
for (int node = 0; node < Nodes; node++) {
IAssert(Graph.AddNode(node) == node);
}
for (int edge = 0; edge < Edges; ) {
const int SrcNId = Rnd.GetUniDevInt(Nodes);
const int DstNId = Rnd.GetUniDevInt(Nodes);
if (SrcNId != DstNId && Graph.AddEdge(SrcNId, DstNId) != -2) {
if (! IsDir) { Graph.AddEdge(DstNId, SrcNId); }
edge++;
}
}
return GraphPt;
}
示例8: GenGeoPrefAttach
/// Generates a random scale-free graph using the Geometric Preferential
/// Attachment model by Flexman, Frieze and Vera.
/// See: A geometric preferential attachment model of networks by Flexman,
/// Frieze and Vera. WAW 2004.
/// URL: http://math.cmu.edu/~af1p/Texfiles/GeoWeb.pdf
PUNGraph GenGeoPrefAttach(const int& Nodes, const int& OutDeg, const double& Beta, TRnd& Rnd) {
PUNGraph G = TUNGraph::New(Nodes, Nodes*OutDeg);
TFltTrV PointV(Nodes, 0);
TFltV ValV;
// points on a sphere of radius 1/(2*pi)
const double Rad = 0.5 * TMath::Pi;
for (int i = 0; i < Nodes; i++) {
TSnapDetail::GetSphereDev(3, Rnd, ValV);
PointV.Add(TFltTr(Rad*ValV[0], Rad*ValV[1], Rad*ValV[2]));
}
const double R2 = TMath::Sqr(log((double) Nodes) / (pow((double) Nodes, 0.5-Beta)));
TIntV DegV, NIdV;
int SumDeg;
for (int t = 0; t < Nodes; t++) {
const int pid = t;
const TFltTr& P1 = PointV[pid];
// add node
if (! G->IsNode(pid)) { G->AddNode(pid); }
// find neighborhood
DegV.Clr(false); NIdV.Clr(false); SumDeg=0;
for (int p = 0; p < t; p++) {
const TFltTr& P2 = PointV[p];
if (TMath::Sqr(P1.Val1-P2.Val1)+TMath::Sqr(P1.Val2-P2.Val2)+TMath::Sqr(P1.Val3-P2.Val3) < R2) {
NIdV.Add(p);
DegV.Add(G->GetNI(p).GetDeg()+1);
SumDeg += DegV.Last();
}
}
// add edges
for (int m = 0; m < OutDeg; m++) {
const int rnd = Rnd.GetUniDevInt(SumDeg);
int sum = 0, dst = -1;
for (int s = 0; s < DegV.Len(); s++) {
sum += DegV[s];
if (rnd < sum) { dst=s; break; }
}
if (dst != -1) {
G->AddEdge(pid, NIdV[dst]);
SumDeg -= DegV[dst];
NIdV.Del(dst); DegV.Del(dst);
}
}
}
return G;
}
示例9: choose
THash <TInt, TInt> * choose (const TInt & population_size, const TInt & sample_size) {
THash <TInt, TInt> * hits = new THash <TInt, TInt> ();
//TRnd random ((int)time(NULL));
//TRnd random (0);
TInt min = TMath::Mn<TInt> (population_size, sample_size);
for (int i = 0; i < min; i++) {
TInt chosen = my_random.GetUniDevInt (population_size - i);
if (hits->IsKey (chosen)) {
hits->AddDat((*hits)(chosen), population_size - i - 1);
}
hits->AddDat(chosen, population_size - i - 1);
}
return hits;
}
示例10: RewireCmtyNID
/// rewire bipartite community affiliation graphs
void TAGMUtil::RewireCmtyNID(THash<TInt,TIntV >& CmtyVH, TRnd& Rnd) {
THash<TInt,TIntV > NewCmtyVH(CmtyVH.Len());
TIntV NDegV;
TIntV CDegV;
for (int i = 0; i < CmtyVH.Len(); i++) {
int CID = CmtyVH.GetKey(i);
for (int j = 0; j < CmtyVH[i].Len(); j++) {
int NID = CmtyVH[i][j];
NDegV.Add(NID);
CDegV.Add(CID);
}
}
TIntPrSet CNIDSet(CDegV.Len());
int c=0;
while (c++ < 15 && CDegV.Len() > 1) {
for (int i = 0; i < CDegV.Len(); i++) {
int u = Rnd.GetUniDevInt(CDegV.Len());
int v = Rnd.GetUniDevInt(NDegV.Len());
if (CNIDSet.IsKey(TIntPr(CDegV[u], NDegV[v]))) {
continue;
}
CNIDSet.AddKey(TIntPr(CDegV[u], NDegV[v]));
if (u == CDegV.Len() - 1) {
CDegV.DelLast();
} else {
CDegV[u] = CDegV.Last();
CDegV.DelLast();
}
if ( v == NDegV.Len() - 1) {
NDegV.DelLast();
} else {
NDegV[v] = NDegV.Last();
NDegV.DelLast();
}
}
}
for (int i = 0; i < CNIDSet.Len(); i++) {
TIntPr CNIDPr = CNIDSet[i];
IAssert(CmtyVH.IsKey(CNIDPr.Val1));
NewCmtyVH.AddDat(CNIDPr.Val1);
NewCmtyVH.GetDat(CNIDPr.Val1).Add(CNIDPr.Val2);
}
CmtyVH = NewCmtyVH;
}
示例11: GenCopyModel
/// Generates a random scale-free network using the Copying Model.
/// The generating process operates as follows: Node u is added to a graph, it
/// selects a random node v, and with prob Beta it links to v, with 1-Beta
/// links u links to neighbor of v. The power-law degree exponent is -1/(1-Beta).
/// See: Stochastic models for the web graph.
/// Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins, Upfal.
/// URL: http://snap.stanford.edu/class/cs224w-readings/kumar00stochastic.pdf
PNGraph GenCopyModel(const int& Nodes, const double& Beta, TRnd& Rnd) {
PNGraph GraphPt = TNGraph::New();
TNGraph& Graph = *GraphPt;
Graph.Reserve(Nodes, Nodes);
const int startNId = Graph.AddNode();
Graph.AddEdge(startNId, startNId);
for (int n = 1; n < Nodes; n++) {
const int rnd = Graph.GetRndNId();
const int NId = Graph.AddNode();
if (Rnd.GetUniDev() < Beta) {
Graph.AddEdge(NId, rnd); }
else {
const TNGraph::TNodeI NI = Graph.GetNI(rnd);
const int rnd2 = Rnd.GetUniDevInt(NI.GetOutDeg());
Graph.AddEdge(NId, NI.GetOutNId(rnd2));
}
}
return GraphPt;
}
示例12: TrainModel
void TrainModel(TVVec<TInt, int64>& WalksVV, int& Dimensions, int& WinSize, int& Iter, bool& Verbose,
TIntV& KTable, TFltV& UTable, int64& WordCntAll, TFltV& ExpTable, double& Alpha,
int64 CurrWalk, TRnd& Rnd, TVVec<TFlt, int64>& SynNeg, TVVec<TFlt, int64>& SynPos) {
TFltV Neu1V(Dimensions);
TFltV Neu1eV(Dimensions);
int64 AllWords = WalksVV.GetXDim()*WalksVV.GetYDim();
TIntV WalkV(WalksVV.GetYDim());
for (int j = 0; j < WalksVV.GetYDim(); j++) { WalkV[j] = WalksVV(CurrWalk,j); }
for (int64 WordI=0; WordI<WalkV.Len(); WordI++) {
if ( WordCntAll%10000 == 0 ) {
if ( Verbose ) {
printf("\rLearning Progress: %.2lf%% ",(double)WordCntAll*100/(double)(Iter*AllWords));
fflush(stdout);
}
Alpha = StartAlpha * (1 - WordCntAll / static_cast<double>(Iter * AllWords + 1));
if ( Alpha < StartAlpha * 0.0001 ) { Alpha = StartAlpha * 0.0001; }
}
int64 Word = WalkV[WordI];
for (int i = 0; i < Dimensions; i++) {
Neu1V[i] = 0;
Neu1eV[i] = 0;
}
int Offset = Rnd.GetUniDevInt() % WinSize;
for (int a = Offset; a < WinSize * 2 + 1 - Offset; a++) {
if (a == WinSize) { continue; }
int64 CurrWordI = WordI - WinSize + a;
if (CurrWordI < 0){ continue; }
if (CurrWordI >= WalkV.Len()){ continue; }
int64 CurrWord = WalkV[CurrWordI];
for (int i = 0; i < Dimensions; i++) { Neu1eV[i] = 0; }
//negative sampling
for (int j = 0; j < NegSamN+1; j++) {
int64 Target, Label;
if (j == 0) {
Target = Word;
Label = 1;
} else {
Target = RndUnigramInt(KTable, UTable, Rnd);
if (Target == Word) { continue; }
Label = 0;
}
double Product = 0;
for (int i = 0; i < Dimensions; i++) {
Product += SynPos(CurrWord,i) * SynNeg(Target,i);
}
double Grad; //Gradient multiplied by learning rate
if (Product > MaxExp) { Grad = (Label - 1) * Alpha; }
else if (Product < -MaxExp) { Grad = Label * Alpha; }
else {
double Exp = ExpTable[static_cast<int>(Product*ExpTablePrecision)+TableSize/2];
Grad = (Label - 1 + 1 / (1 + Exp)) * Alpha;
}
for (int i = 0; i < Dimensions; i++) {
Neu1eV[i] += Grad * SynNeg(Target,i);
SynNeg(Target,i) += Grad * SynPos(CurrWord,i);
}
}
for (int i = 0; i < Dimensions; i++) {
SynPos(CurrWord,i) += Neu1eV[i];
}
}
WordCntAll++;
}
}
示例13:
TLSHash::EuclideanHash::EuclideanHash(TRnd &Gen, int Dim) {
for (int j=0; j<Dim; j++) {
Line.Add(Gen.GetNrmDev());
}
Line.Add(Gen.GetUniDevInt(Gap));
}
示例14: ConnectCmtyVV
///Generate bipartite community affiliation from given power law coefficients for membership distribution and community size distribution.
void TAGMUtil::ConnectCmtyVV(TVec<TIntV>& CmtyVV, const TIntPrV& CIDSzPrV, const TIntPrV& NIDMemPrV, TRnd& Rnd) {
const int Nodes = NIDMemPrV.Len(), Coms = CIDSzPrV.Len();
TIntV NDegV,CDegV;
TIntPrSet CNIDSet;
TIntSet HitNodes(Nodes);
THash<TInt,TIntV> CmtyVH;
for (int i = 0; i < CIDSzPrV.Len(); i++) {
for (int j = 0; j < CIDSzPrV[i].Val2; j++) {
CDegV.Add(CIDSzPrV[i].Val1);
}
}
for (int i = 0; i < NIDMemPrV.Len(); i++) {
for (int j = 0; j < NIDMemPrV[i].Val2; j++) {
NDegV.Add(NIDMemPrV[i].Val1);
}
}
while (CDegV.Len() < (int) (1.2 * Nodes)) {
CDegV.Add(CIDSzPrV[Rnd.GetUniDevInt(Coms)].Val1);
}
while (NDegV.Len() < CDegV.Len()) {
NDegV.Add(NIDMemPrV[Rnd.GetUniDevInt(Nodes)].Val1);
}
printf("Total Mem: %d, Total Sz: %d\n",NDegV.Len(), CDegV.Len());
int c=0;
while (c++ < 15 && CDegV.Len() > 1) {
for (int i = 0; i < CDegV.Len(); i++) {
int u = Rnd.GetUniDevInt(CDegV.Len());
int v = Rnd.GetUniDevInt(NDegV.Len());
if (CNIDSet.IsKey(TIntPr(CDegV[u], NDegV[v]))) {
continue;
}
CNIDSet.AddKey(TIntPr(CDegV[u], NDegV[v]));
HitNodes.AddKey(NDegV[v]);
if (u == CDegV.Len() - 1) {
CDegV.DelLast();
}
else {
CDegV[u] = CDegV.Last();
CDegV.DelLast();
}
if (v == NDegV.Len() - 1) {
NDegV.DelLast();
}
else {
NDegV[v] = NDegV.Last();
NDegV.DelLast();
}
}
}
//make sure that every node belongs to at least one community
for (int i = 0; i < Nodes; i++) {
int NID = NIDMemPrV[i].Val1;
if (! HitNodes.IsKey(NID)) {
CNIDSet.AddKey(TIntPr(CIDSzPrV[Rnd.GetUniDevInt(Coms)].Val1, NID));
HitNodes.AddKey(NID);
}
}
IAssert(HitNodes.Len() == Nodes);
for (int i = 0; i < CNIDSet.Len(); i++) {
TIntPr CNIDPr = CNIDSet[i];
CmtyVH.AddDat(CNIDPr.Val1);
CmtyVH.GetDat(CNIDPr.Val1).Add(CNIDPr.Val2);
}
CmtyVH.GetDatV(CmtyVV);
}