本文整理汇总了C++中TRandom::Poisson方法的典型用法代码示例。如果您正苦于以下问题:C++ TRandom::Poisson方法的具体用法?C++ TRandom::Poisson怎么用?C++ TRandom::Poisson使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TRandom
的用法示例。
在下文中一共展示了TRandom::Poisson方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: run
// Throw toy experiments to predict observed yields:
// - Throw nPredictions mean values (prediction) from the background estimates
// considering their uncertainties
// - Per prediction, throw nExperiments observed yields from a Poisson
// distribution with mean value prediction
void ToyExperiments::run(unsigned int nPredictions, unsigned int nExperiments) const {
std::cout << "Predicting event yields in " << Parameters::nBins() << " bins from " << nPredictions*nExperiments << " toy experiments ... " << std::flush;
// Minimal value (in standard deviations) allowed for
//correlated fluctuation
const double minCorr = findMinValidRandomNumberForCorrelatedUncertainties();
// Throw mean values
for(unsigned int p = 0; p < nPredictions; ++p) {
// Throw one (normalized) random number for correlated
// uncertainties that is valid in all bins
double rCorr = rand_->Gaus(0.,1.);
while( rCorr <= minCorr ) {
rCorr = rand_->Gaus(0.,1.);
}
// Loop over all bins and get individual predictions
for(unsigned int bin = 0; bin < Parameters::nBins(); ++bin) {
double prediction = -1.;
bool negativePrediction = true;
while( negativePrediction ) {
// Throw one (normalized) random number for uncorrelated
// uncertainties that is valid in this bin only
double rUncorr = rand_->Gaus(0.,1.);
// Scale the normalized random numbers by the uncertainties' size
// to obtain variation of yield
double uncorrVar = rUncorr * uncorrelatedUncerts_.at(bin);
double corrVar = rCorr * correlatedUncerts_.at(bin);
// Add variations to yield
prediction = meanPredictions_.at(bin) + uncorrVar + corrVar;
// Check if prediction is positive
if( prediction >= 0. ) {
negativePrediction = false;
}
}
// Throw predicted yields from Poisson with
// this mean
for(unsigned int e = 0; e < nExperiments; ++e) {
predictedYields_.at(bin)->Fill(rand_->Poisson(prediction));
}
}
}
std::cout << "ok" << std::endl;
for(unsigned int bin = 0; bin < Parameters::nBins(); ++bin) {
if( predictedYields_.at(bin)->GetBinContent(Parameters::maxYield()+1) > 0 ) {
std::cerr << "\n\nWARNING: Overflows in yield histograms!" << std::endl;
std::cerr << "This is probably safe, but better increase Parameters::maxYield.\n\n" << std::endl;
}
}
}
示例2: printGlobalPValueOfLocalFluctuation
// PValue for finding a local p-value as observed in 'bin' or worse
void ToyExperiments::printGlobalPValueOfLocalFluctuation(unsigned int bin, unsigned int nExperiments) const {
std::cout << "Determining global p-value for observed fluctuation in bin " << bin << " from " << nExperiments << " toy experiments ... " << std::flush;
// Find the predicted yields that correspond
// to the local p-value 'localPValue'
std::vector<unsigned int> limitYields = yields(localPValue(bin,observedYields_.at(bin)));
TH1* hIsAbovePValue = new TH1D("hIsAbovePValue","",2,0,2);
const double minCorr = findMinValidRandomNumberForCorrelatedUncertainties();
for(unsigned int p = 0; p < nExperiments; ++p) {
bool isAbovePValue = false;
double rCorr = rand_->Gaus(0.,1.);
while( rCorr <= minCorr ) {
rCorr = rand_->Gaus(0.,1.);
}
for(unsigned int b = 0; b < Parameters::nBins(); ++b) {
double prediction = -1.;
bool negativePrediction = true;
while( negativePrediction ) {
double rUncorr = rand_->Gaus(0.,1.);
double uncorrVar = rUncorr * uncorrelatedUncerts_.at(b);
double corrVar = rCorr * correlatedUncerts_.at(b);
prediction = meanPredictions_.at(b) + uncorrVar + corrVar;
if( prediction >= 0. ) {
negativePrediction = false;
}
}
double predictedYield = rand_->Poisson(prediction);
if( predictedYield >= limitYields.at(b) ) {
isAbovePValue = true;
break;
}
}
if( isAbovePValue ) {
hIsAbovePValue->Fill(1);
} else {
hIsAbovePValue->Fill(0);
}
}
std::cout << "ok" << std::endl;
double lpv = localPValue(bin,observedYields_.at(bin));
double gpUncorr = 1. - pow(1.-lpv,Parameters::nBins());
double gpCorr = hIsAbovePValue->Integral(2,2)/hIsAbovePValue->Integral(1,2);
std::cout << "\n\n----- Global p-value for observed fluctuation in bin " << bin << " -----" << std::endl;
std::cout << " local p-value : " << lpv << " (" << TMath::NormQuantile(1.-lpv) << "sig)" << std::endl;
std::cout << " global p-value (without correlations) : " << gpUncorr << " (" << TMath::NormQuantile(1.-gpUncorr) << "sig)" << std::endl;
std::cout << " global p-value (including correlations) : " << gpCorr << " (" << TMath::NormQuantile(1.-gpCorr) << "sig)" << std::endl;
}
示例3: write
double write(int n) {
TRandom R;
TStopwatch timer;
TFile f1("mathcoreLV.root","RECREATE");
// create tree
TTree t1("t1","Tree with new LorentzVector");
std::vector<ROOT::Math::XYZTVector> tracks;
std::vector<ROOT::Math::XYZTVector> * pTracks = &tracks;
t1.Branch("tracks","std::vector<ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> > >",&pTracks);
double M = 0.13957; // set pi+ mass
timer.Start();
double sum = 0;
for (int i = 0; i < n; ++i) {
int nPart = R.Poisson(5);
pTracks->clear();
pTracks->reserve(nPart);
for (int j = 0; j < nPart; ++j) {
double px = R.Gaus(0,10);
double py = R.Gaus(0,10);
double pt = sqrt(px*px +py*py);
double eta = R.Uniform(-3,3);
double phi = R.Uniform(0.0 , 2*TMath::Pi() );
RhoEtaPhiVector vcyl( pt, eta, phi);
// set energy
double E = sqrt( vcyl.R()*vcyl.R() + M*M);
XYZTVector q( vcyl.X(), vcyl.Y(), vcyl.Z(), E);
// fill track vector
pTracks->push_back(q);
// evaluate sum of components to check
sum += q.x()+q.y()+q.z()+q.t();
}
t1.Fill();
}
f1.Write();
timer.Stop();
std::cout << " Time for new Vector " << timer.RealTime() << " " << timer.CpuTime() << std::endl;
t1.Print();
return sum;
}
示例4: error
double error(double a, double b) {
TRandom rndm;
rndm.SetSeed(12345);
if (a<=0.000000001) return 0.;
double eff = a/b;
int n0 = rndm.Poisson((a+b));
// int n1 = rndm.Binomial(n0,eff);
double err=sqrt(eff*(1-eff)/n0);
return err;
}
示例5: FitBias
void FitBias(TString CAT,TString CUT,float SIG,float BKG,int NTOYS)
{
gROOT->ForceStyle();
RooMsgService::instance().setSilentMode(kTRUE);
RooMsgService::instance().setStreamStatus(0,kFALSE);
RooMsgService::instance().setStreamStatus(1,kFALSE);
// -----------------------------------------
TFile *fTemplates = TFile::Open("templates_"+CUT+"_"+CAT+"_workspace.root");
RooWorkspace *wTemplates = (RooWorkspace*)fTemplates->Get("w");
RooRealVar *x = (RooRealVar*)wTemplates->var("mTop");
RooAbsPdf *pdf_signal = (RooAbsPdf*)wTemplates->pdf("ttbar_pdf_Nominal");
RooAbsPdf *pdf_bkg = (RooAbsPdf*)wTemplates->pdf("qcdCor_pdf");
TRandom *rnd = new TRandom();
rnd->SetSeed(0);
x->setBins(250);
RooPlot *frame;
TFile *outf;
if (NTOYS > 1) {
outf = TFile::Open("FitBiasToys_"+CUT+"_"+CAT+".root","RECREATE");
}
float nSigInj,nBkgInj,nSigFit,nBkgFit,eSigFit,eBkgFit,nll;
TTree *tr = new TTree("toys","toys");
tr->Branch("nSigInj",&nSigInj,"nSigInj/F");
tr->Branch("nSigFit",&nSigFit,"nSigFit/F");
tr->Branch("nBkgInj",&nBkgInj,"nBkgInj/F");
tr->Branch("nBkgFit",&nBkgFit,"nBkgFit/F");
tr->Branch("eSigFit",&eSigFit,"eSigFit/F");
tr->Branch("eBkgFit",&eBkgFit,"eBkgFit/F");
tr->Branch("nll" ,&nll ,"nll/F");
for(int itoy=0;itoy<NTOYS;itoy++) {
// generate pseudodataset
nSigInj = rnd->Poisson(SIG);
nBkgInj = rnd->Poisson(BKG);
RooRealVar *nSig = new RooRealVar("nSig","nSig",nSigInj);
RooRealVar *nBkg = new RooRealVar("nBkg","nBkg",nBkgInj);
RooAddPdf *model = new RooAddPdf("model","model",RooArgList(*pdf_signal,*pdf_bkg),RooArgList(*nSig,*nBkg));
RooDataSet *data = model->generate(*x,nSigInj+nBkgInj);
RooDataHist *roohist = new RooDataHist("roohist","roohist",RooArgList(*x),*data);
// build fit model
RooRealVar *nFitSig = new RooRealVar("nFitSig","nFitSig",SIG,0,10*SIG);
RooRealVar *nFitBkg = new RooRealVar("nFitBkg","nFitBkg",BKG,0,10*BKG);
RooAddPdf *modelFit = new RooAddPdf("modelFit","modelFit",RooArgList(*pdf_signal,*pdf_bkg),RooArgList(*nFitSig,*nFitBkg));
// fit the pseudo dataset
RooFitResult *res = modelFit->fitTo(*roohist,RooFit::Save(),RooFit::Extended(kTRUE));
//res->Print();
nSigFit = nFitSig->getVal();
nBkgFit = nFitBkg->getVal();
eSigFit = nFitSig->getError();
eBkgFit = nFitBkg->getError();
nll = res->minNll();
tr->Fill();
if (itoy % 100 == 0) {
cout<<"Toy #"<<itoy<<": injected = "<<nSigInj<<", fitted = "<<nSigFit<<", error = "<<eSigFit<<endl;
}
if (NTOYS == 1) {
frame = x->frame();
roohist->plotOn(frame);
model->plotOn(frame);
}
}
if (NTOYS == 1) {
TCanvas *can = new TCanvas("Toy","Toy",900,600);
frame->Draw();
}
else {
outf->cd();
tr->Write();
outf->Close();
fTemplates->Close();
}
}
示例6: principal
void principal(Int_t n=10, Int_t m=10000)
{
//
// Principal Components Analysis (PCA) example
//
// Example of using TPrincipal as a stand alone class.
//
// We create n-dimensional data points, where c = trunc(n / 5) + 1
// are correlated with the rest n - c randomly distributed variables.
//
// Here's the plot of the eigenvalues Begin_Html
// <IMG SRC="gif/principal_eigen.gif">
// End_Html
//Authors: Rene Brun, Christian Holm Christensen
Int_t c = n / 5 + 1;
cout << "*************************************************" << endl;
cout << "* Principal Component Analysis *" << endl;
cout << "* *" << endl;
cout << "* Number of variables: " << setw(4) << n
<< " *" << endl;
cout << "* Number of data points: " << setw(8) << m
<< " *" << endl;
cout << "* Number of dependent variables: " << setw(4) << c
<< " *" << endl;
cout << "* *" << endl;
cout << "*************************************************" << endl;
// Initilase the TPrincipal object. Use the empty string for the
// final argument, if you don't wan't the covariance
// matrix. Normalising the covariance matrix is a good idea if your
// variables have different orders of magnitude.
TPrincipal* principal = new TPrincipal(n,"ND");
// Use a pseudo-random number generator
TRandom* random = new TRandom;
// Make the m data-points
// Make a variable to hold our data
// Allocate memory for the data point
Double_t* data = new Double_t[n];
for (Int_t i = 0; i < m; i++) {
// First we create the un-correlated, random variables, according
// to one of three distributions
for (Int_t j = 0; j < n - c; j++) {
if (j % 3 == 0)
data[j] = random->Gaus(5,1);
else if (j % 3 == 1)
data[j] = random->Poisson(8);
else
data[j] = random->Exp(2);
}
// Then we create the correlated variables
for (Int_t j = 0 ; j < c; j++) {
data[n - c + j] = 0;
for (Int_t k = 0; k < n - c - j; k++)
data[n - c + j] += data[k];
}
// Finally we're ready to add this datapoint to the PCA
principal->AddRow(data);
}
// We delete the data after use, since TPrincipal got it by now.
delete [] data;
// Do the actual analysis
principal->MakePrincipals();
// Print out the result on
principal->Print();
// Test the PCA
principal->Test();
// Make some histograms of the orginal, principal, residue, etc data
principal->MakeHistograms();
// Make two functions to map between feature and pattern space
principal->MakeCode();
// Start a browser, so that we may browse the histograms generated
// above
TBrowser* b = new TBrowser("principalBrowser", principal);
}
示例7: printGlobalPValueOfObservation
// The probability to find a value of the test statistic equal or
// worse than the one obtained with the observed yields
void ToyExperiments::printGlobalPValueOfObservation(unsigned int nExperiments) const {
std::cout << "Performing " << nExperiments << " toy experiments to compute global p-value of observation ... " << std::flush;
// The test statistic
TH1* hTestStat = new TH1D("hTestStat","",10000*Parameters::nBins(),0,1000);
std::vector<unsigned int> obs(Parameters::nBins(),0);
// Minimal value (in standard deviations) allowed for
//correlated fluctuation
const double minCorr = findMinValidRandomNumberForCorrelatedUncertainties();
// Throw mean values
for(unsigned int p = 0; p < nExperiments; ++p) {
// Throw one (normalized) random number for correlated
// uncertainties that is valid in all bins
double rCorr = rand_->Gaus(0.,1.);
while( rCorr <= minCorr ) {
rCorr = rand_->Gaus(0.,1.);
}
// Loop over all bins and get individual predictions
for(unsigned int bin = 0; bin < Parameters::nBins(); ++bin) {
double prediction = -1.;
bool negativePrediction = true;
while( negativePrediction ) {
// Throw one (normalized) random number for uncorrelated
// uncertainties that is valid in this bin only
double rUncorr = rand_->Gaus(0.,1.);
// Scale the normalized random numbers by the uncertainties' size
// to obtain variation of yield
double uncorrVar = rUncorr * uncorrelatedUncerts_.at(bin);
double corrVar = rCorr * correlatedUncerts_.at(bin);
// Add variations to yield
prediction = meanPredictions_.at(bin) + uncorrVar + corrVar;
// Check if prediction is positive
if( prediction >= 0. ) {
negativePrediction = false;
}
}
// Throw predicted yields from Poisson with
// this mean
obs.at(bin) = rand_->Poisson(prediction);
} // End of loop over bins
hTestStat->Fill(testStatistic(obs));
}
std::cout << "ok" << std::endl;
std::cout << "\n\n----- Global p-value of observation -----" << std::endl;
double tSObs = testStatistic(observedYields_);
int binTSObs = hTestStat->FindBin(tSObs);
int binTSTot = hTestStat->GetNbinsX()+1; // Include overflows
double gpVal = hTestStat->Integral(binTSObs,binTSTot)/hTestStat->Integral(1,binTSTot);
if( binTSObs == binTSTot ) {
std::cerr << " ERROR: observed value of test statistic out of histogram range" << std::endl;
} else if( hTestStat->GetBinContent(binTSTot) > 0 ) {
std::cerr << " WARNING: distribution of test statistic has overflows (N = " << hTestStat->GetBinContent(binTSTot) << ")" << std::endl;
}
std::cout << " observed value of test statistic : " << tSObs << std::endl;
std::cout << " global p-value (including correlations) : " << gpVal << " (" << TMath::NormQuantile(1.-gpVal) << "sig)" << std::endl;
hTestStat->Draw();
gPad->SetLogy();
gPad->SaveAs("TestStatistic.pdf");
delete hTestStat;
}