本文整理汇总了C++中TPPLPoly类的典型用法代码示例。如果您正苦于以下问题:C++ TPPLPoly类的具体用法?C++ TPPLPoly怎么用?C++ TPPLPoly使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了TPPLPoly类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: initTPPLPoly
// Initialize polypartition TPPLPoly from a list of indices and vertices
//
// verts - 3D polygon vertex vectors
// xind,yind - Indices of 3D vectors to extract as x and y coordinates for 2D
// triangulation computation.
// inds,size - Array of indices into the `verts` list
// isHole - Value for the hole flag, and to determine the orientation
static void initTPPLPoly(TPPLPoly& poly,
const std::vector<float>& verts,
int xind, int yind,
const GLuint* inds, int size,
bool isHole)
{
// Check for explicitly closed polygons (last and first vertices equal) and
// discard the last vertex in these cases. This is a pretty stupid
// convention, but the OGC have blessed it and now we've got a bunch of
// geospatial formats (kml, WKT, GeoJSON) which require it. Sigh.
// http://gis.stackexchange.com/questions/10308/why-do-valid-polygons-repeat-the-same-start-and-end-point/10309#10309
if (inds[0] == inds[size-1] ||
(verts[3*inds[0]+0] == verts[3*inds[size-1]+0] &&
verts[3*inds[0]+1] == verts[3*inds[size-1]+1] &&
verts[3*inds[0]+2] == verts[3*inds[size-1]+2]))
{
g_logger.warning_limited("Ignoring duplicate final vertex in explicitly closed polygon");
size -= 1;
}
// Copy into polypartition data structure
poly.Init(size);
for (int i = 0; i < size; ++i)
{
poly[i].x = verts[3*inds[i]+xind];
poly[i].y = verts[3*inds[i]+yind];
poly[i].id = inds[i];
}
int orientation = poly.GetOrientation();
// Invert so that outer = ccw, holes = cw
if ((orientation == TPPL_CW) ^ isHole)
poly.Invert();
poly.SetHole(isHole);
}
示例2: TPPLPoly_To_Polygon
TPPLPoly TPPLPoly_To_Polygon(const ClipperLib::Polygon& B)
{
TPPLPoly poly;
poly.Init(B.size());
for(unsigned int i=0; i < B.size() ; ++i)
{
poly[i].x = B[i].X;
poly[i].y = B[i].Y;
}
return poly;
}
示例3: _getEdges
std::vector<sf::Vector2f> _getEdges(TPPLPoly& A)
{
std::vector<sf::Vector2f> edges;
for(unsigned int i=0; i < (A.GetNumPoints()+1) ; ++i)
{
sf::Vector2f P1( A[i].x, A[i].y);
sf::Vector2f P2( A[(i+1)%A.GetNumPoints()].x, A[(i+1)%A.GetNumPoints()].y );
edges.push_back( P2 - P1 );
}
return edges;
}
示例4:
void
Cylinder::triangulate(list<TPPLPoly>& tri_list) const
{
TPPLPartition pp;
list<TPPLPoly> polys;
TPPLPoly poly;
TPPLPoint pt;
double d_alpha = 0.5;
double alpha_max = 0, alpha_min = std::numeric_limits<double>::max();
for(size_t i = 0; i < contours_[0].size(); ++i)
{
double alpha = contours_[0][i](0) / r_;
if (alpha > alpha_max) alpha_max = alpha;
if (alpha < alpha_min) alpha_min = alpha;
}
std::cout << "r " << r_ << std::endl;
std::cout << "alpha " << alpha_min << "," << alpha_max << std::endl;
std::vector<std::vector<std::vector<Eigen::Vector2f> > > contours_split;
for(size_t j = 0; j < contours_.size(); j++)
{
for(double i = alpha_min + d_alpha; i <= alpha_max; i += d_alpha)
{
std::vector<Eigen::Vector2f> contour_segment;
for(size_t k = 0; k < contours_[j].size(); ++k)
{
double alpha = contours_[j][k](0) / r_;
if( alpha >= i - d_alpha - 0.25 && alpha < i + 0.25)
{
contour_segment.push_back(contours_[j][k]);
}
}
//std::cout << "c " << j << i << " has " << contour_segment.size() << " points" << std::endl;
if(contour_segment.size() < 3) continue;
poly.Init(contour_segment.size());
poly.SetHole(holes_[j]);
for( unsigned int l = 0; l < contour_segment.size(); l++)
{
pt.x = contour_segment[l](0);
pt.y = contour_segment[l](1);
poly[l] = pt;
}
if (holes_[j])
poly.SetOrientation(TPPL_CW);
else
poly.SetOrientation(TPPL_CCW);
polys.push_back(poly);
}
}
// triangulation into monotone triangles
pp.Triangulate_EC (&polys, &tri_list);
}
示例5: make_poly
void make_poly(float* buf, int pnt_sz, TPPLPoly& poly)
{
poly.Init(pnt_sz);
for (int k(0); k < pnt_sz; k++)
{
poly[k].x = buf[2 * k];
poly[k].y = buf[2 * k + 1];
}
if (poly.GetOrientation() == TPPL_CW)
{
poly.SetHole(true);
}
}
示例6: _getPoints
std::vector<sf::Vector2f> _getPoints(TPPLPoly& A)
{
std::vector<sf::Vector2f> points;
for(unsigned int i=0; i < A.GetNumPoints() ; ++i)
{
sf::Vector2f P( A[i].x, A[i].y);
points.push_back( P );
}
return points;
}
示例7: partition
void partition() {
TPPLPoly poly;
std::vector<Point> nodes = polygons_[0].nodes_;
poly.Init(nodes.size());
unsigned int i = 0;
for (std::vector<Point>::const_iterator p = nodes.begin(); p != nodes.end(); ++p, ++i) {
poly[i].x = p->lat;
poly[i].y = p->lon;
}
std::list<TPPLPoly> convex_polys;
TPPLPartition partitioner;
partitioner.Triangulate_OPT(&poly, &convex_polys);
//partitioner.ConvexPartition_HM(&poly, &convex_polys);
polygons_.clear();
for (std::list<TPPLPoly>::iterator p = convex_polys.begin(); p != convex_polys.end(); ++p) {
add_polygon();
for (long i = 0; i < p->GetNumPoints(); ++i) {
TPPLPoint point = p->GetPoint(i);
add_node(Point(point.x, point.y));
}
}
}
示例8: if
//triangulates a set of polygons by first partitioning them into monotone polygons
//O(n*log(n)) time complexity, O(n) space complexity
//the algorithm used here is outlined in the book
//"Computational Geometry: Algorithms and Applications"
//by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars
int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *monotonePolys) {
list<TPPLPoly>::iterator iter;
MonotoneVertex *vertices;
long i,numvertices,vindex,vindex2,newnumvertices,maxnumvertices;
long polystartindex, polyendindex;
TPPLPoly *poly;
MonotoneVertex *v,*v2,*vprev,*vnext;
ScanLineEdge newedge;
bool error = false;
numvertices = 0;
for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
numvertices += iter->GetNumPoints();
}
maxnumvertices = numvertices*3;
vertices = new MonotoneVertex[maxnumvertices];
newnumvertices = numvertices;
polystartindex = 0;
for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
poly = &(*iter);
polyendindex = polystartindex + poly->GetNumPoints()-1;
for(i=0;i<poly->GetNumPoints();i++) {
vertices[i+polystartindex].p = poly->GetPoint(i);
if(i==0) vertices[i+polystartindex].previous = polyendindex;
else vertices[i+polystartindex].previous = i+polystartindex-1;
if(i==(poly->GetNumPoints()-1)) vertices[i+polystartindex].next = polystartindex;
else vertices[i+polystartindex].next = i+polystartindex+1;
}
polystartindex = polyendindex+1;
}
//construct the priority queue
long *priority = new long [numvertices];
for(i=0;i<numvertices;i++) priority[i] = i;
std::sort(priority,&(priority[numvertices]),VertexSorter(vertices));
//determine vertex types
char *vertextypes = new char[maxnumvertices];
for(i=0;i<numvertices;i++) {
v = &(vertices[i]);
vprev = &(vertices[v->previous]);
vnext = &(vertices[v->next]);
if(Below(vprev->p,v->p)&&Below(vnext->p,v->p)) {
if(IsConvex(vnext->p,vprev->p,v->p)) {
vertextypes[i] = TPPL_VERTEXTYPE_START;
} else {
vertextypes[i] = TPPL_VERTEXTYPE_SPLIT;
}
} else if(Below(v->p,vprev->p)&&Below(v->p,vnext->p)) {
if(IsConvex(vnext->p,vprev->p,v->p))
{
vertextypes[i] = TPPL_VERTEXTYPE_END;
} else {
vertextypes[i] = TPPL_VERTEXTYPE_MERGE;
}
} else {
vertextypes[i] = TPPL_VERTEXTYPE_REGULAR;
}
}
//helpers
long *helpers = new long[maxnumvertices];
//binary search tree that holds edges intersecting the scanline
//note that while set doesn't actually have to be implemented as a tree
//complexity requirements for operations are the same as for the balanced binary search tree
set<ScanLineEdge> edgeTree;
//store iterators to the edge tree elements
//this makes deleting existing edges much faster
set<ScanLineEdge>::iterator *edgeTreeIterators,edgeIter;
edgeTreeIterators = new set<ScanLineEdge>::iterator[maxnumvertices];
pair<set<ScanLineEdge>::iterator,bool> edgeTreeRet;
for(i = 0; i<numvertices; i++) edgeTreeIterators[i] = edgeTree.end();
//for each vertex
for(i=0;i<numvertices;i++) {
vindex = priority[i];
v = &(vertices[vindex]);
vindex2 = vindex;
v2 = v;
//depending on the vertex type, do the appropriate action
//comments in the following sections are copied from "Computational Geometry: Algorithms and Applications"
switch(vertextypes[vindex]) {
case TPPL_VERTEXTYPE_START:
//Insert ei in T and set helper(ei) to vi.
newedge.p1 = v->p;
newedge.p2 = vertices[v->next].p;
newedge.index = vindex;
edgeTreeRet = edgeTree.insert(newedge);
edgeTreeIterators[vindex] = edgeTreeRet.first;
helpers[vindex] = vindex;
//.........这里部分代码省略.........
示例9: centerOfMass
GeneralPolygon::operator list<TPPLPoly>()
{
auto isPolygonOutside = [&](const Contour &referencePolygon, const Contour &poly)
{
for(unsigned int p=0; p < referencePolygon.size() ; ++p)
if( !_evenOddRuleAlgorithm( referencePolygon[p], poly) )
return true;
return false;
};
list<TPPLPoly> polys;
for(unsigned int c=0; c < _contours.size() ; ++c)
{
const Contour &contour = _contours[c];
TPPLPoly poly;
poly.Init(contour.size());
for(unsigned int v=0; v < contour.size() ; ++v)
{
TPPLPoint point;
point.x = contour[v].x;
point.y = contour[v].y;
poly[v] = point;
}
// BE CAREFULL!!! not really correct because the polygon could be concave then
// the center of mass could not be inside the polygon
sf::Vector2f centerOfMass(0.0f, 0.0f);
for(unsigned int i=0; i < contour.size() ; ++i)
centerOfMass += contour[i];
centerOfMass *= (1.0f/contour.size());
std::vector<Contour> outsideContours;
for(unsigned int i=0; i < _contours.size() ; ++i)
{
if( i == c )
{
outsideContours.push_back(_contours[i]);
continue;
}
if( isPolygonOutside(_contours[i], contour) )
outsideContours.push_back(_contours[i]);
}
// first test if is a hole or not
if( !_evenOddRuleAlgorithm( centerOfMass, outsideContours ) )
poly.SetHole(true);
else
poly.SetHole(false);
// if it is a hole then it must be in CW order to the algorithm to recognize
// else must be in CCW
if( poly.IsHole() )
poly.SetOrientation(TPPL_CW);// Hole orientation (needed in the algorithm)
else
poly.SetOrientation(TPPL_CCW);// Not a hole orientation (needed in the algorithm)
polys.push_back(poly);
}
return polys;
}
示例10: ConvexPartition_OPT
int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts) {
TPPLPoint p1,p2,p3,p4;
PartitionVertex *vertices;
DPState2 **dpstates;
long i,j,k,n,gap;
list<Diagonal> diagonals,diagonals2;
Diagonal diagonal,newdiagonal;
list<Diagonal> *pairs,*pairs2;
list<Diagonal>::iterator iter,iter2;
int ret;
TPPLPoly newpoly;
list<long> indices;
list<long>::iterator iiter;
bool ijreal,jkreal;
n = poly->GetNumPoints();
vertices = new PartitionVertex[n];
dpstates = new DPState2 *[n];
for(i=0;i<n;i++) {
dpstates[i] = new DPState2[n];
}
//init vertex information
for(i=0;i<n;i++) {
vertices[i].p = poly->GetPoint(i);
vertices[i].isActive = true;
if(i==0) vertices[i].previous = &(vertices[n-1]);
else vertices[i].previous = &(vertices[i-1]);
if(i==(poly->GetNumPoints()-1)) vertices[i].next = &(vertices[0]);
else vertices[i].next = &(vertices[i+1]);
}
for(i=1;i<n;i++) {
UpdateVertexReflexity(&(vertices[i]));
}
//init states and visibility
for(i=0;i<(n-1);i++) {
p1 = poly->GetPoint(i);
for(j=i+1;j<n;j++) {
dpstates[i][j].visible = true;
if(j==i+1) {
dpstates[i][j].weight = 0;
} else {
dpstates[i][j].weight = 2147483647;
}
if(j!=(i+1)) {
p2 = poly->GetPoint(j);
//visibility check
if(!InCone(&vertices[i],p2)) {
dpstates[i][j].visible = false;
continue;
}
if(!InCone(&vertices[j],p1)) {
dpstates[i][j].visible = false;
continue;
}
for(k=0;k<n;k++) {
p3 = poly->GetPoint(k);
if(k==(n-1)) p4 = poly->GetPoint(0);
else p4 = poly->GetPoint(k+1);
if(Intersects(p1,p2,p3,p4)) {
dpstates[i][j].visible = false;
break;
}
}
}
}
}
for(i=0;i<(n-2);i++) {
j = i+2;
if(dpstates[i][j].visible) {
dpstates[i][j].weight = 0;
newdiagonal.index1 = i+1;
newdiagonal.index2 = i+1;
dpstates[i][j].pairs.push_back(newdiagonal);
}
}
dpstates[0][n-1].visible = true;
vertices[0].isConvex = false; //by convention
for(gap=3; gap<n; gap++) {
for(i=0;i<n-gap;i++) {
if(vertices[i].isConvex) continue;
k = i+gap;
if(dpstates[i][k].visible) {
if(!vertices[k].isConvex) {
for(j=i+1;j<k;j++) TypeA(i,j,k,vertices,dpstates);
} else {
for(j=i+1;j<(k-1);j++) {
if(vertices[j].isConvex) continue;
TypeA(i,j,k,vertices,dpstates);
}
TypeA(i,k-1,k,vertices,dpstates);
}
}
}
//.........这里部分代码省略.........
示例11: Triangulate_OPT
//minimum-weight polygon triangulation by dynamic programming
//O(n^3) time complexity
//O(n^2) space complexity
int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, list<TPPLPoly> *triangles) {
long i,j,k,gap,n;
DPState **dpstates;
TPPLPoint p1,p2,p3,p4;
long bestvertex;
tppl_float weight,minweight,d1,d2;
Diagonal diagonal,newdiagonal;
list<Diagonal> diagonals;
TPPLPoly triangle;
int ret = 1;
n = poly->GetNumPoints();
dpstates = new DPState *[n];
for(i=1;i<n;i++) {
dpstates[i] = new DPState[i];
}
//init states and visibility
for(i=0;i<(n-1);i++) {
p1 = poly->GetPoint(i);
for(j=i+1;j<n;j++) {
dpstates[j][i].visible = true;
dpstates[j][i].weight = 0;
dpstates[j][i].bestvertex = -1;
if(j!=(i+1)) {
p2 = poly->GetPoint(j);
//visibility check
if(i==0) p3 = poly->GetPoint(n-1);
else p3 = poly->GetPoint(i-1);
if(i==(n-1)) p4 = poly->GetPoint(0);
else p4 = poly->GetPoint(i+1);
if(!InCone(p3,p1,p4,p2)) {
dpstates[j][i].visible = false;
continue;
}
if(j==0) p3 = poly->GetPoint(n-1);
else p3 = poly->GetPoint(j-1);
if(j==(n-1)) p4 = poly->GetPoint(0);
else p4 = poly->GetPoint(j+1);
if(!InCone(p3,p2,p4,p1)) {
dpstates[j][i].visible = false;
continue;
}
for(k=0;k<n;k++) {
p3 = poly->GetPoint(k);
if(k==(n-1)) p4 = poly->GetPoint(0);
else p4 = poly->GetPoint(k+1);
if(Intersects(p1,p2,p3,p4)) {
dpstates[j][i].visible = false;
break;
}
}
}
}
}
dpstates[n-1][0].visible = true;
dpstates[n-1][0].weight = 0;
dpstates[n-1][0].bestvertex = -1;
for(gap = 2; gap<n; gap++) {
for(i=0; i<(n-gap); i++) {
j = i+gap;
if(!dpstates[j][i].visible) continue;
bestvertex = -1;
for(k=(i+1);k<j;k++) {
if(!dpstates[k][i].visible) continue;
if(!dpstates[j][k].visible) continue;
if(k<=(i+1)) d1=0;
else d1 = Distance(poly->GetPoint(i),poly->GetPoint(k));
if(j<=(k+1)) d2=0;
else d2 = Distance(poly->GetPoint(k),poly->GetPoint(j));
weight = dpstates[k][i].weight + dpstates[j][k].weight + d1 + d2;
if((bestvertex == -1)||(weight<minweight)) {
bestvertex = k;
minweight = weight;
}
}
if(bestvertex == -1) {
for(i=1;i<n;i++) {
delete [] dpstates[i];
}
delete [] dpstates;
return 0;
}
dpstates[j][i].bestvertex = bestvertex;
dpstates[j][i].weight = minweight;
}
}
//.........这里部分代码省略.........
示例12: ConvexPartition_HM
int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, list<TPPLPoly> *parts) {
list<TPPLPoly> triangles;
list<TPPLPoly>::iterator iter1,iter2;
TPPLPoly *poly1 = 0, *poly2 = 0;
TPPLPoly newpoly;
TPPLPoint d1,d2,p1,p2,p3;
long i11,i12,i21,i22,i13,i23,j,k;
bool isdiagonal;
long numreflex;
//check if the poly is already convex
numreflex = 0;
for(i11=0;i11<poly->GetNumPoints();i11++) {
if(i11==0) i12 = poly->GetNumPoints()-1;
else i12=i11-1;
if(i11==(poly->GetNumPoints()-1)) i13=0;
else i13=i11+1;
if(IsReflex(poly->GetPoint(i12),poly->GetPoint(i11),poly->GetPoint(i13))) {
numreflex = 1;
break;
}
}
if(numreflex == 0) {
parts->push_back(*poly);
return 1;
}
if(!Triangulate_EC(poly,&triangles)) return 0;
for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
poly1 = &(*iter1);
for(i11=0;i11<poly1->GetNumPoints();i11++) {
d1 = poly1->GetPoint(i11);
i12 = (i11+1)%(poly1->GetNumPoints());
d2 = poly1->GetPoint(i12);
isdiagonal = false;
for(iter2 = iter1; iter2 != triangles.end(); iter2++) {
if(iter1 == iter2) continue;
poly2 = &(*iter2);
for(i21=0;i21<poly2->GetNumPoints();i21++) {
if((d2.x != poly2->GetPoint(i21).x)||(d2.y != poly2->GetPoint(i21).y)) continue;
i22 = (i21+1)%(poly2->GetNumPoints());
if((d1.x != poly2->GetPoint(i22).x)||(d1.y != poly2->GetPoint(i22).y)) continue;
isdiagonal = true;
break;
}
if(isdiagonal) break;
}
if(!isdiagonal) continue;
p2 = poly1->GetPoint(i11);
if(i11 == 0) i13 = poly1->GetNumPoints()-1;
else i13 = i11-1;
p1 = poly1->GetPoint(i13);
if(i22 == (poly2->GetNumPoints()-1)) i23 = 0;
else i23 = i22+1;
p3 = poly2->GetPoint(i23);
if(!IsConvex(p1,p2,p3)) continue;
p2 = poly1->GetPoint(i12);
if(i12 == (poly1->GetNumPoints()-1)) i13 = 0;
else i13 = i12+1;
p3 = poly1->GetPoint(i13);
if(i21 == 0) i23 = poly2->GetNumPoints()-1;
else i23 = i21-1;
p1 = poly2->GetPoint(i23);
if(!IsConvex(p1,p2,p3)) continue;
newpoly.Init(poly1->GetNumPoints()+poly2->GetNumPoints()-2);
k = 0;
for(j=i12;j!=i11;j=(j+1)%(poly1->GetNumPoints())) {
newpoly[k] = poly1->GetPoint(j);
k++;
}
for(j=i22;j!=i21;j=(j+1)%(poly2->GetNumPoints())) {
newpoly[k] = poly2->GetPoint(j);
k++;
}
triangles.erase(iter2);
*iter1 = newpoly;
poly1 = &(*iter1);
i11 = -1;
continue;
}
}
for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
parts->push_back(*iter1);
}
return 1;
}
示例13: Triangulate_EC
//triangulation by ear removal
int TPPLPartition::Triangulate_EC(TPPLPoly *poly, list<TPPLPoly> *triangles) {
long numvertices;
PartitionVertex *vertices;
PartitionVertex *ear = 0;
TPPLPoly triangle;
long i,j;
bool earfound;
if(poly->GetNumPoints() < 3) return 0;
if(poly->GetNumPoints() == 3) {
triangles->push_back(*poly);
return 1;
}
numvertices = poly->GetNumPoints();
vertices = new PartitionVertex[numvertices];
for(i=0;i<numvertices;i++) {
vertices[i].isActive = true;
vertices[i].p = poly->GetPoint(i);
if(i==(numvertices-1)) vertices[i].next=&(vertices[0]);
else vertices[i].next=&(vertices[i+1]);
if(i==0) vertices[i].previous = &(vertices[numvertices-1]);
else vertices[i].previous = &(vertices[i-1]);
}
for(i=0;i<numvertices;i++) {
UpdateVertex(&vertices[i],vertices,numvertices);
}
for(i=0;i<numvertices-3;i++) {
earfound = false;
//find the most extruded ear
for(j=0;j<numvertices;j++) {
if(!vertices[j].isActive) continue;
if(!vertices[j].isEar) continue;
if(!earfound) {
earfound = true;
ear = &(vertices[j]);
} else {
if(vertices[j].angle > ear->angle) {
ear = &(vertices[j]);
}
}
}
if(!earfound) {
delete [] vertices;
return 0;
}
triangle.Triangle(ear->previous->p,ear->p,ear->next->p);
triangles->push_back(triangle);
ear->isActive = false;
ear->previous->next = ear->next;
ear->next->previous = ear->previous;
if(i==numvertices-4) break;
UpdateVertex(ear->previous,vertices,numvertices);
UpdateVertex(ear->next,vertices,numvertices);
}
for(i=0;i<numvertices;i++) {
if(vertices[i].isActive) {
triangle.Triangle(vertices[i].previous->p,vertices[i].p,vertices[i].next->p);
triangles->push_back(triangle);
break;
}
}
delete [] vertices;
return 1;
}
示例14: RemoveHoles
//removes holes from inpolys by merging them with non-holes
int TPPLPartition::RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys) {
list<TPPLPoly> polys;
list<TPPLPoly>::iterator holeiter,polyiter,iter,iter2;
long i,i2,holepointindex,polypointindex;
TPPLPoint holepoint,polypoint,bestpolypoint;
TPPLPoint linep1,linep2;
TPPLPoint v1,v2;
TPPLPoly newpoly;
bool hasholes;
bool pointvisible;
bool pointfound;
//check for trivial case (no holes)
hasholes = false;
for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
if(iter->IsHole()) {
hasholes = true;
break;
}
}
if(!hasholes) {
for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
outpolys->push_back(*iter);
}
return 1;
}
polys = *inpolys;
while(1) {
//find the hole point with the largest x
hasholes = false;
for(iter = polys.begin(); iter!=polys.end(); iter++) {
if(!iter->IsHole()) continue;
if(!hasholes) {
hasholes = true;
holeiter = iter;
holepointindex = 0;
}
for(i=0; i < iter->GetNumPoints(); i++) {
if(iter->GetPoint(i).x > holeiter->GetPoint(holepointindex).x) {
holeiter = iter;
holepointindex = i;
}
}
}
if(!hasholes) break;
holepoint = holeiter->GetPoint(holepointindex);
pointfound = false;
for(iter = polys.begin(); iter!=polys.end(); iter++) {
if(iter->IsHole()) continue;
for(i=0; i < iter->GetNumPoints(); i++) {
if(iter->GetPoint(i).x <= holepoint.x) continue;
if(!InCone(iter->GetPoint((i+iter->GetNumPoints()-1)%(iter->GetNumPoints())),
iter->GetPoint(i),
iter->GetPoint((i+1)%(iter->GetNumPoints())),
holepoint))
continue;
polypoint = iter->GetPoint(i);
if(pointfound) {
v1 = Normalize(polypoint-holepoint);
v2 = Normalize(bestpolypoint-holepoint);
if(v2.x > v1.x) continue;
}
pointvisible = true;
for(iter2 = polys.begin(); iter2!=polys.end(); iter2++) {
if(iter2->IsHole()) continue;
for(i2=0; i2 < iter2->GetNumPoints(); i2++) {
linep1 = iter2->GetPoint(i2);
linep2 = iter2->GetPoint((i2+1)%(iter2->GetNumPoints()));
if(Intersects(holepoint,polypoint,linep1,linep2)) {
pointvisible = false;
break;
}
}
if(!pointvisible) break;
}
if(pointvisible) {
pointfound = true;
bestpolypoint = polypoint;
polyiter = iter;
polypointindex = i;
}
}
}
if(!pointfound) return 0;
newpoly.Init(holeiter->GetNumPoints() + polyiter->GetNumPoints() + 2);
i2 = 0;
for(i=0;i<=polypointindex;i++) {
newpoly[i2] = polyiter->GetPoint(i);
i2++;
}
for(i=0;i<=holeiter->GetNumPoints();i++) {
newpoly[i2] = holeiter->GetPoint((i+holepointindex)%holeiter->GetNumPoints());
//.........这里部分代码省略.........
示例15: TriangulateMonotone
//triangulates monotone polygon
//O(n) time, O(n) space complexity
int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, list<TPPLPoly> *triangles) {
long i,i2,j,topindex,bottomindex,leftindex,rightindex,vindex;
TPPLPoint *points;
long numpoints;
TPPLPoly triangle;
numpoints = inPoly->GetNumPoints();
points = inPoly->GetPoints();
//trivial calses
if(numpoints < 3) return 0;
if(numpoints == 3) {
triangles->push_back(*inPoly);
}
topindex = 0; bottomindex=0;
for(i=1;i<numpoints;i++) {
if(Below(points[i],points[bottomindex])) bottomindex = i;
if(Below(points[topindex],points[i])) topindex = i;
}
//check if the poly is really monotone
i = topindex;
while(i!=bottomindex) {
i2 = i+1; if(i2>=numpoints) i2 = 0;
if(!Below(points[i2],points[i])) return 0;
i = i2;
}
i = bottomindex;
while(i!=topindex) {
i2 = i+1; if(i2>=numpoints) i2 = 0;
if(!Below(points[i],points[i2])) return 0;
i = i2;
}
char *vertextypes = new char[numpoints];
long *priority = new long[numpoints];
//merge left and right vertex chains
priority[0] = topindex;
vertextypes[topindex] = 0;
leftindex = topindex+1; if(leftindex>=numpoints) leftindex = 0;
rightindex = topindex-1; if(rightindex<0) rightindex = numpoints-1;
for(i=1;i<(numpoints-1);i++) {
if(leftindex==bottomindex) {
priority[i] = rightindex;
rightindex--; if(rightindex<0) rightindex = numpoints-1;
vertextypes[priority[i]] = -1;
} else if(rightindex==bottomindex) {
priority[i] = leftindex;
leftindex++; if(leftindex>=numpoints) leftindex = 0;
vertextypes[priority[i]] = 1;
} else {
if(Below(points[leftindex],points[rightindex])) {
priority[i] = rightindex;
rightindex--; if(rightindex<0) rightindex = numpoints-1;
vertextypes[priority[i]] = -1;
} else {
priority[i] = leftindex;
leftindex++; if(leftindex>=numpoints) leftindex = 0;
vertextypes[priority[i]] = 1;
}
}
}
priority[i] = bottomindex;
vertextypes[bottomindex] = 0;
long *stack = new long[numpoints];
long stackptr = 0;
stack[0] = priority[0];
stack[1] = priority[1];
stackptr = 2;
//for each vertex from top to bottom trim as many triangles as possible
for(i=2;i<(numpoints-1);i++) {
vindex = priority[i];
if(vertextypes[vindex]!=vertextypes[stack[stackptr-1]]) {
for(j=0;j<(stackptr-1);j++) {
if(vertextypes[vindex]==1) {
triangle.Triangle(points[stack[j+1]],points[stack[j]],points[vindex]);
} else {
triangle.Triangle(points[stack[j]],points[stack[j+1]],points[vindex]);
}
triangles->push_back(triangle);
}
stack[0] = priority[i-1];
stack[1] = priority[i];
stackptr = 2;
} else {
stackptr--;
while(stackptr>0) {
if(vertextypes[vindex]==1) {
if(IsConvex(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]])) {
triangle.Triangle(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]]);
triangles->push_back(triangle);
stackptr--;
} else {
//.........这里部分代码省略.........