本文整理汇总了C++中TMinuit::mnparm方法的典型用法代码示例。如果您正苦于以下问题:C++ TMinuit::mnparm方法的具体用法?C++ TMinuit::mnparm怎么用?C++ TMinuit::mnparm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TMinuit
的用法示例。
在下文中一共展示了TMinuit::mnparm方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Ifit
//______________________________________________________________________________
void Ifit()
{
// The z values
z[0]=1;
z[1]=0.96;
z[2]=0.89;
z[3]=0.85;
z[4]=0.78;
// The errors on z values
Float_t error = 0.01;
errorz[0]=error;
errorz[1]=error;
errorz[2]=error;
errorz[3]=error;
errorz[4]=error;
// the x values
x[0]=1.5751;
x[1]=1.5825;
x[2]=1.6069;
x[3]=1.6339;
x[4]=1.6706;
// the y values
y[0]=1.0642;
y[1]=0.97685;
y[2]=1.13168;
y[3]=1.128654;
y[4]=1.44016;
TMinuit *gMinuit = new TMinuit(5); //initialize TMinuit with a maximum of 5 params
gMinuit->SetFCN(fcn);
Double_t arglist[10];
Int_t ierflg = 0;
arglist[0] = 1;
gMinuit->mnexcm("SET ERR", arglist ,1,ierflg);
// Set starting values and step sizes for parameters
static Double_t vstart[4] = {3, 1 , 0.1 , 0.01};
static Double_t step[4] = {0.1 , 0.1 , 0.01 , 0.001};
gMinuit->mnparm(0, "a1", vstart[0], step[0], 0,0,ierflg);
gMinuit->mnparm(1, "a2", vstart[1], step[1], 0,0,ierflg);
gMinuit->mnparm(2, "a3", vstart[2], step[2], 0,0,ierflg);
gMinuit->mnparm(3, "a4", vstart[3], step[3], 0,0,ierflg);
// Now ready for minimization step
arglist[0] = 500;
arglist[1] = 1.;
gMinuit->mnexcm("MIGRAD", arglist ,2,ierflg);
// Print results
Double_t amin,edm,errdef;
Int_t nvpar,nparx,icstat;
gMinuit->mnstat(amin,edm,errdef,nvpar,nparx,icstat);
//gMinuit->mnprin(3,amin);
}
示例2:
std::vector<double> run_fit(double parSRS){
TMinuit minuit;
double arglist[10];
int iflag;
arglist[0] = -1;
minuit.mnexcm("SET PRINT",arglist,1,iflag);
minuit.mnexcm("SET NOW",arglist,0,iflag);
minuit.SetFCN(fcn);
minuit.mnexcm("SET STR",arglist,1,iflag);
minuit.mnparm(0,"parSRS",parSRS,0.1,-100,100,iflag);
arglist[0] = 10000;
arglist[1] = 0.01;
minuit.mnexcm("MIGRAD",arglist,2,iflag);
minuit.mnexcm("HESSE",arglist,0,iflag);
double fmin, fedm,errdef;
int npari, nparx, istat;
minuit.mnstat(fmin,fedm,errdef,npari,nparx,istat);
double val,err;
std::vector<double> ret_ary;
for(int p = 0; p < 1; p++) {
minuit.GetParameter(p, val, err);
ret_ary.push_back(val);
}
ret_ary.push_back(fmin);
return ret_ary;
}
示例3: cSpline
//______________________________________________________________________________
vector< vector<double> > cSpline(int nPoints, int npar, vector <double> xData, vector <double> yData, vector <double> yErrorData, double stepSpline, double start, double step)
{
//Populate the global variables//-> DONE IN THE MAIN
xData_GLOB = xData;//-> DONE IN THE MAIN
yData_GLOB = yData;//-> DONE IN THE MAIN
yErrorData_GLOB = yErrorData;//-> DONE IN THE MAIN
//Initialize Minuit
vector<double> vstart, vstep;
for(int i=0; i<npar; i++) //set starting values and step sizes for parameters
{
vstart.push_back(start);
vstep.push_back(step);
}
TMinuit *myMinuit = new TMinuit(npar); //initialize TMinuit with a maximum of npar (5) -> PASSED AS ARGUMENT
myMinuit->SetFCN(fcn);//-> DONE IN THE MAIN
myMinuit->SetPrintLevel(-1);//No output: -1, output:1//-> DONE IN THE MAIN
double arglist[10];//-> DONE IN THE MAIN
int ierflg = 0;//-> DONE IN THE MAIN
arglist[0] = 1;//-> DONE IN THE MAIN
myMinuit->mnexcm("SET ERR", arglist, 1, ierflg);//-> DONE IN THE MAIN
for (int i = 0; i < npar; i++) {//-> DONE IN THE MAIN
stringstream ss;//-> DONE IN THE MAIN
ss<<"a"<<i;//-> DONE IN THE MAIN
myMinuit->mnparm(i, ss.str().c_str(), vstart.at(i), vstep.at(i), 0, 0, ierflg);//-> DONE IN THE MAIN
}//-> DONE IN THE MAIN
//Perform the Minuit fit
arglist[0] = 500;//-> DONE IN THE MAIN
arglist[1] = 1.;//-> DONE IN THE MAIN
myMinuit->mnexcm("MIGRAD", arglist, 2, ierflg); //minimization
//Retrieve best-fit parameters
vector< double > bestFitParams, e_bestFitParams;
for(int i=0; i<npar; i++)
{
double par, epar;
myMinuit->GetParameter(i, par, epar); //retrieve best fit parameters
bestFitParams.push_back(par);
e_bestFitParams.push_back(epar);
}
//Store the best-fit spline in a TGraph
gsl_spline_init (spline_GLOB, &xData[0], &bestFitParams[0], xData.size()); //initialize the spline
int nPointsSpline = int ((xData[nPoints-1]-xData[0])/stepSpline); //calculate the number of points of the spline
vector< vector<double> > cSplineValues;
cSplineValues.push_back( vector< double > ());//x
cSplineValues.push_back( vector< double > ());//y
for (int i= 0; i < nPointsSpline; i++){
cSplineValues[0].push_back(xData[0]+i*stepSpline);
cSplineValues[1].push_back(gsl_spline_eval (spline_GLOB, cSplineValues[0].back(), acc_GLOB));
}
return cSplineValues;
}
示例4: unbinFitosc_pts
void unbinFitosc_pts()
{
TMinuit *gMinuit = new TMinuit(4);
gMinuit -> SetFCN(mll_fit_pts);
Double_t arglist[10];
Double_t vstart[10];
Double_t step[10];
Double_t p0=0,p1=1,p2=2,p3=3;
Int_t ierflg=0;
Double_t par0;
Double_t err0;
// Set to 0.5 for likelihood, 1 for chisquare
arglist[0] = 0.5;
gMinuit->mnexcm("SET ERR", arglist, 1, ierflg);
// Set initial values of parameters
vstart[0] = oscpar0_init;
step[0] = oscerr0_step;
gMinuit->mnparm(0, "mistag", vstart[0], step[0], 0., 0., ierflg);
// Do minimization
arglist[0] = 3000.;
arglist[1] = 0.1;
gMinuit->mnexcm("CALL FCN", &p1, 1, ierflg);
gMinuit->mnexcm("MIGRAD", arglist, 2, ierflg);
gMinuit->mnexcm("CALL FCN", &p3, 1, ierflg);
// Get parameters
gMinuit->GetParameter(0,par0,err0);
// Export the fitted parameters so we can graph them.
fitpar=par0;
fiterr=err0;
RooComplex ct = RooMath::ComplexErrFunc(2.,1.);
Double_t ctre=ct.re();
Double_t ctim=ct.im();
printf("ct %10.5f %10.5f \n",ctre,ctim);
delete gMinuit;
}
示例5:
std::vector<double> run_fit(double parOOR, double parOEFG, double parOFTMR,
double parOTO, double parSRS) {
TMinuit minuit;
double arglist[10];
int iflag;
arglist[0] = -1;
minuit.mnexcm("SET PRINT",arglist,1,iflag);
minuit.mnexcm("SET NOW",arglist,0,iflag);
minuit.SetFCN(fcn);
arglist[0] = 2;
minuit.mnexcm("SET STR",arglist,1,iflag);
minuit.mnparm(0,"parOOR",parOOR,0.1,0,0,iflag);//or
minuit.mnparm(1,"parEFG",parOEFG,0.1,0,0,iflag);//efgp
minuit.mnparm(2,"parFTMR",parOFTMR,0.1,0,0,iflag);//ftr
minuit.mnparm(3,"parTO",parOTO,0.1,0,0,iflag);//top
minuit.mnparm(4,"parSRS",parSRS,0.1,0,0,iflag);//srs
if (parSRS == 0)
minuit.FixParameter(4);
arglist[0] = 10000;
arglist[1] = 0.0001;
minuit.mnexcm("MIGRAD",arglist,2,iflag);
minuit.mnexcm("HESSE",arglist,0,iflag);
double fmin, fedm,errdef;
int npari, nparx, istat;
minuit.mnstat(fmin,fedm,errdef,npari,nparx,istat);
double val,err;
std::vector<double> ret_ary;
for(int p = 0; p < 5; p++) {
minuit.GetParameter(p, val, err);
ret_ary.push_back(val);
}
ret_ary.push_back(fmin);
return ret_ary;
}
示例6: MinuitFit
Double_t Fitter::MinuitFit() {
TMinuit *gMinuit = new TMinuit(1);
gMinuit->SetFCN(ChiSquare);
//settings
Double_t arglist[6];
Int_t ierflg = 0;
// Set starting values and step sizes for parameters
gMinuit->mnparm(0, "Sig", _W1, _step, _W1min, _W1max,ierflg);
//gMinuit->mnparm(0, "Sig", _W1, _step,0,0,ierflg);
// Now ready for minimization step
gMinuit->mnexcm("MIGRAD", arglist ,0,ierflg);
// Print results
Double_t amin,edm,errdef;
Int_t nvpar,nparx,icstat;
gMinuit->mnstat(amin, edm, errdef, nvpar, nparx, icstat);
gMinuit->mnprin(3, amin);
//gMinuit->mnexcm("MINOS", arglist ,0,ierflg);
for(int i=0; i<1; i++)
{
gMinuit -> GetParameter(i, _W1, _W1err);
cout<<"Parameter fit "<<i<<" value "<<_W1<<" err "<<_W1err<<endl;
}
delete gMinuit;
//calculate bkg error:
double entries_mc = _hsig->Integral(_hdata->GetXaxis()->FindBin(_xmin), _hdata->GetXaxis()->FindBin(_xmax));
double entries_bkg = _hbkg->Integral(_hdata->GetXaxis()->FindBin(_xmin), _hdata->GetXaxis()->FindBin(_xmax));
_W2err = _W1err*entries_mc/entries_bkg;
return amin;
}
示例7: Loop
//.........这里部分代码省略.........
cout << " the content of data[2] is = " << Pcdata[2] << "+-"<<Pedata[2] << endl ;
cout << " the content of pythia[2] is = " << Pcpythia[2] << "+-"<<Pepythia[2] << endl ;
cout << " the content of pythia[2] is = " << Pcpompyt[2] << "+-"<<Pepompyt[2] << endl ;
// Here we go: the minuit show
TMinuit *gMinuit = new TMinuit(NPAR); //initialize TMinuit with a maximum of NPAR params
gMinuit->SetFCN(fcn);
Double_t arglist[NPAR]; // ???
Int_t ierflg = 0;
// Set starting values and step sizes for parameters
Double_t vstart[NPAR] ;
Double_t step[NPAR] ;
Double_t par[NPAR] ,fpar[NPAR];
char parName[NPAR];
Int_t n;
parName[0] = "Pythia";
parName[1] = "Pompyt";
par[0] = Hdata->Integral()/Hpythia->Integral();
par[1] = 0.05*Hdata->Integral()/Hpompyt->Integral();
for (n=0 ; n<NPAR ; n++)
{
vstart[n] = par[n] ;
step[n] = 0.5 ;
sprintf(parName,"a%d",n);
gMinuit->mnparm(n, parName, vstart[n], step[n], 0,0,ierflg);
}
cout << "par[0] set to = " << par[0] << " while par[1] = " << par[1] << endl;
arglist[0] = 1;
gMinuit->mnexcm("SET ERR", arglist ,1,ierflg);
gMinuit->mnexcm("SET PRINT", arglist,1,ierflg);
//Scan on parameter = 1
arglist[0] = 1;
gMinuit->mnexcm("SCAN", arglist,1,ierflg);
//Maximum number of calls
arglist[0] = 500;
gMinuit->mnexcm("MIGRAD", arglist,1,ierflg);
// Print results
Double_t amin,edm,errdef;
Int_t nvpar,nparx,icstat;
gMinuit->mnstat(amin,edm,errdef,nvpar,nparx,icstat);
gMinuit->mnprin(3,amin);
//Get the final fit parameters
for (n=0 ; n<NPAR ; n++)
{
Double_t parameter, erro ;
gMinuit->GetParameter(n,parameter,erro) ;
fpar[n] = parameter ;
示例8: multipleSplinesWithHistogramsVb
//_________________________________________________________________________________
void multipleSplinesWithHistogramsVb(int iEventLook = 163, int nEvents = 1000, int nPoints = 9, double seed = 231)
{
double lowerBound = 10; //bounds for random vector function
double upperBound = 20;
double lowerErrorBound = 1;
double upperErrorBound = 2;
//Load the data
vector< vector<double> > xEvents, yEvents, yErrorEvents; //each of these is a vector of vectors (of randomized data points)
for(int i = 0; i < nEvents; i++)
{
vector <double> xData, yData, yErrorData; //temporary vectors that are only used to get random values from FillRand function
FillRandVectors(nPoints, xData, yData, yErrorData, seed*(i+1), lowerBound, upperBound, lowerErrorBound, upperErrorBound); //populates random vectors for y values and y error vector
xEvents.push_back(xData);
yEvents.push_back(yData);
yErrorEvents.push_back(yErrorData);
}
//Intialization of the variables
const int npar = nPoints;
const int orderSpline = 4;
const int nbreak = npar+2-orderSpline;
double stepSpline = 0.01;
double xminBSplineWorkspace = 0;
double xmaxBSplineWorkspace = 9;
double startCSplineWorkspace = 15.;
double stepCSplineWorkspace = 1.5;
acc_GLOB = gsl_interp_accel_alloc ();
spline_GLOB = gsl_spline_alloc (gsl_interp_cspline, nPoints);
bw_GLOB = gsl_bspline_alloc(orderSpline, nbreak);
//B- and C-splines
clock_t tbstart, tbstop, tcstart, tcstop;
vector <double> timeb, timec;
vector< vector<double> > xBSplineValues, yBSplineValues;
vector< vector<double> > xCSplineValues, yCSplineValues;
//Setup for the C-spline_________________________________________________________________________
TMinuit *myMinuit = new TMinuit(npar); //initialize TMinuit with a maximum of npar
myMinuit->SetFCN(fcn);
myMinuit->SetPrintLevel(-1);//No output: -1, output:1
double arglist[10];
int ierflg = 0;
arglist[0] = 1;
myMinuit->mnexcm("SET ERR", arglist, 1, ierflg);
//Initialize Minuit
vector<double> vstart, vstep;
for(int i=0; i<npar; i++) //set starting values and step sizes for parameters
{
vstart.push_back(startCSplineWorkspace);
vstep.push_back(stepCSplineWorkspace);
}
for (int i = 0; i < npar; i++) {
stringstream ss;
ss<<"a"<<i;
myMinuit->mnparm(i, ss.str().c_str(), vstart.at(i), vstep.at(i), 0, 0, ierflg);
}
//Setup for the B-spline_________________________________________________________________________
//Looping begins for the calculations of the B and C-splines for each event
for(int i = 0; i < (int)xEvents.size(); i++)
{
//Populate the global variables
xData_GLOB = xEvents.at(i);
yData_GLOB = yEvents.at(i);
yErrorData_GLOB = yErrorEvents.at(i);
tbstart = clock();
vector< vector<double> > bSplineValues = bSpline(nPoints, npar, xEvents.at(i), yEvents.at(i), yErrorEvents.at(i), stepSpline, xminBSplineWorkspace, xmaxBSplineWorkspace);
tbstop = clock();
timeb.push_back(((float)tbstop-(float)tbstart)/ (CLOCKS_PER_SEC/1000.) );
std::cout<<timeb.back()<<std::endl;
xBSplineValues.push_back(bSplineValues.at(0));
yBSplineValues.push_back(bSplineValues.at(1));
tcstart = clock();
vector< vector<double> > cSplineValues = cSpline(nPoints, npar, xEvents.at(i), stepSpline, myMinuit);
tcstop = clock();
timec.push_back(((float)tcstop-(float)tcstart)/ (CLOCKS_PER_SEC/1000.) );
xCSplineValues.push_back(cSplineValues.at(0));
yCSplineValues.push_back(cSplineValues.at(1));
}
//Histograms______________________________________________________________________________________
//Time
int nbins = 100;
double xlow = 0;
double xup = 1.;
//.........这里部分代码省略.........
示例9: integratedSplinesV4a
//_________________________________________________________________________________
void integratedSplinesV4a(double seed = 231)
{
//Load the data
int nEvents = 1000; //number of times the data will be randomized
int nPoints = 9;
vector< vector<double> > xEvents, yEvents, yErrorEvents; //each of these is a vector of vectors (of randomized data points)
for(int i = 0; i < nEvents; i++)
{
vector <double> xData, yData, yErrorData; //temporary vectors that are only used to get random values from FillRand function
FillRandVectors(nPoints, xData, yData, yErrorData, seed*(i+1)); //populates random vectors for y values and y error vector
xEvents.push_back(xData);
yEvents.push_back(yData);
yErrorEvents.push_back(yErrorData);
//Populate the global variables
xData_GLOB = xData;
yData_GLOB = yData;
yErrorData_GLOB = yErrorData;
}
//Intialization of the variables
const int npar = nPoints;
const int orderSpline = 4;
const int nbreak = npar+2-orderSpline;
double stepSpline = 0.01;
double xminBSplineWorkspace = 0;
double xmaxBSplineWorkspace = 9;
double startCSplineWorkspace = 15.;
double stepCSplineWorkspace = 1.5;
acc_GLOB = gsl_interp_accel_alloc ();
spline_GLOB = gsl_spline_alloc (gsl_interp_cspline, nPoints);
gsl_bspline_workspace *bw = gsl_bspline_alloc(orderSpline, nbreak);
//Setting up TMinuit for C-spline minimization
TMinuit *myMinuit = new TMinuit(npar); //initialize TMinuit with a maximum of npar (5)
myMinuit->SetFCN(fcn);
myMinuit->SetPrintLevel(-1);//No output: -1, output:1
double arglist[10];
int ierflg = 0;
arglist[0] = 1;
myMinuit->mnexcm("SET ERR", arglist, 1, ierflg);
vector<double> vstart, vstep;
for(int i=0; i < npar; i++) //set starting values and step sizes for parameters
{
vstart.push_back(startCSplineWorkspace);
vstep.push_back(stepCSplineWorkspace);
}
for (int i = 0; i < npar; i++)
{
stringstream ss;
ss<<"a"<<i;
myMinuit->mnparm(i, ss.str().c_str(), vstart.at(i), vstep.at(i), 0, 0, ierflg);
}
//Perform the Minuit fit
arglist[0] = 500;
arglist[1] = 1.;
//B and C spline loops__________________________________________________________________________
clock_t tbstart, tbstop, tcstart, tcstop;
vector <double> timeb, timec;
vector< vector<double> > xBSplineValues, yBSplineValues;
vector< vector<double> > xCSplineValues, yCSplineValues;
for(int i = 0; i < (int)xEvents.size(); i++)
{
tbstart = clock();
vector< vector<double> > bSplineValues = bSpline(nPoints, npar, xEvents.at(i), yEvents.at(i), yErrorEvents.at(i), stepSpline, xminBSplineWorkspace, xmaxBSplineWorkspace, bw);
tbstop = clock();
timeb.push_back(((float)tbstop-(float)tbstart)/ (CLOCKS_PER_SEC/1000.) );
xBSplineValues.push_back(bSplineValues.at(0));
yBSplineValues.push_back(bSplineValues.at(1));
tcstart = clock();
vector< vector<double> > cSplineValues = cSpline(nPoints, npar, xEvents.at(i), stepSpline, myMinuit, arglist, ierflg);
tcstop = clock();
timec.push_back(((float)tcstop-(float)tcstart)/ (CLOCKS_PER_SEC/1000.) );
xCSplineValues.push_back(cSplineValues.at(0));
yCSplineValues.push_back(cSplineValues.at(1));
}
//Histograms______________________________________________________________________________________
//Time
int nbins = 100;
double xlow = 0;
double xup = 5.;
TH1D *hTimeB = new TH1D("Time","; time [ms]; number of runs", nbins, xlow, xup);
hTimeB->SetStats(0);
TH1D *hTimeC = new TH1D("TimeC","; time [ms]; number of runs", nbins, xlow, xup);
hTimeC->SetLineColor(kRed);
hTimeC->SetStats(0);
//.........这里部分代码省略.........
示例10: testZeeMCSmearWithScale
//.........这里部分代码省略.........
double fitpar[10];
double fitparErr[10];
double smearcat[4] = {1.1,1.1,1.1,1.1};
double smearcatMax[4] = {3,3,3,3};
double deltaEcat[4] = {0,0,0,0};
if(smearMethod=="uncorrSmear"){
smearcatMax[0] = 0.05;
smearcatMax[1] = 0.05;
smearcatMax[2] = 0.05;
smearcatMax[3] = 0.05;
smearcat[0] = 0.007;
smearcat[1] = 0.01;
smearcat[2] = 0.015;
smearcat[3] = 0.02;
if(fitdet==2){
smearcat[0] = 0.02;
smearcat[1] = 0.02;
smearcat[2] = 0.02;
smearcat[3] = 0.02;
}
}
for(int j=0; j<4; j++){
TString parname = TString (Form("smearcat%d",j));
if(smearMethod=="corrSmear"){
minuit->mnparm(j, parname, smearcat[j], STEPMN, 0.5,smearcatMax[j],ierflg);
}else if(smearMethod=="uncorrSmear"){
minuit->mnparm(j, parname, smearcat[j], STEPMN, 0,smearcatMax[j],ierflg);
}
fitpar[j] = smearcat[j]; //initialized values
}
for(int j=4; j<npar; j++){
TString parname = TString (Form("scalecat%d",j-4));
minuit->mnparm(j, parname, deltaEcat[j-4], STEPMN, -0.03,0.03,ierflg);
fitpar[j] = deltaEcat[j-4]; //initialized values
}
if(fixscale==1){
for(int j=4; j<npar; j++){
minuit->FixParameter(j);
}
}
if(testpaircat==1){
minuit->FixParameter(0);
minuit->FixParameter(2);
minuit->FixParameter(3);
minuit->FixParameter(4);
minuit->FixParameter(6);
minuit->FixParameter(7);
}else if( testpaircat==0){
示例11: fit_chi2_err_two_components
//.........这里部分代码省略.........
// for (int i=1;i<2000;i++){ //the Sig or Bkg histo has 2000 bins
for (int i=1;i<= sigTemplate->GetNbinsX();i++){
if(/* ( ( bkgTemplate2->GetBinContent(i) ) != 0) ||*/ ( ( bkgTemplate1->GetBinContent(i) ) != 0) || ( ( sigTemplate->GetBinContent(i) ) != 0 ) ){
Number_of_points = Number_of_points+1;
}
}
//cout<<"Number_of_points:"<<Number_of_points<<endl;
int dof = Number_of_points-1 ;//dof=Number_of_points - free_par
//and in this case we normalize it so free_par =1
//cout<<"dof of this fit:"<<dof<<endl;
/////////
TMinuit *gMinuit = new TMinuit(1); // initialize TMinuit with a maximum of 1 params
// TMinuit *gMinuit = new TMinuit(2); //initialize TMinuit with a maximum of 5 (1param??) params
gMinuit->SetFCN(fcn); // sets function to minimize: fcn is Chi2 with errors on templates
Double_t arglist[10];
Int_t ierflg = 0; // status flag, it is 0 when ereything goes fine
// -- sets error
arglist[0] = 1;
gMinuit->mnexcm("SET ERR", arglist ,1,ierflg);
// set first parameter
Double_t vstart = sigFrac_intial;
//Double_t vstart = 0.48 ;//0.11;//intial value
Double_t step = 0.001;
gMinuit->mnparm(0, "fsig", vstart, step, 0,1,ierflg);
/*
// set second parameter
vstart = bkg1Frac_intial;
// vstart = 0.4; //0.69;//intial value
step = 0.001;
gMinuit->mnparm(1, "fbk1", vstart, step, 0,1,ierflg);
*/
// Now ready for minimization step
arglist[0] = 1000;
arglist[1] = 0.01;
gMinuit->mnexcm("MIGRAD", arglist ,2,ierflg);
Double_t fsig=0;
Double_t fsigerr=0;
Double_t fbk1=0;
// Double_t fbk1err=0;
Double_t chi2 = 0;
if ( ierflg == 0 )
{
// Print results
Double_t amin,edm,errdef;
Int_t nvpar,nparx,icstat;
gMinuit->mnstat(amin,edm,errdef,nvpar,nparx,icstat);
gMinuit->mnprin(3,amin);
chi2 = (gMinuit->fAmin)/dof;
gMinuit->GetParameter(0, fsig, fsigerr );
示例12: Ifit
//.........这里部分代码省略.........
dataColl.push_back(hdata->GetBinContent(ibin));
sigColl.push_back(hsig->GetBinContent(ibin));
bkgColl.push_back(hbkg->GetBinContent(ibin));
}
printf( " ----- Got %d, %d, %d events for fit ----- \n ", dataColl.size(), sigColl.size(), bkgColl.size() );
if ( dataColl.size() != sigColl.size() || sigColl.size()!=bkgColl.size() ) {
printf(" error ... inconsistent hit collection size \n");
fin_data->Close();
fin->Close();
fin_gjet6000->Close();
return fitted;
}
//--------------------------------------------------
//init parameters for fit
Double_t vstart[10] = {1., 1.};
vstart[0] = sigfrac*ndata;
vstart[1] = (1-sigfrac)*ndata;
TMinuit *gMinuit = new TMinuit(NPAR);
gMinuit->Command("SET STR 1");
gMinuit->SetFCN(fcn);
Double_t arglist[10];
Int_t ierflg = 0;
arglist[0] = 1;
gMinuit->mnexcm("SET ERR", arglist ,1,ierflg);
arglist[0] = 1;
gMinuit->mnexcm("SET PRINT", arglist ,1,ierflg);
Double_t step[] = { 0.1, 0.1,};
gMinuit->mnparm(0, "Signal yield" , vstart[0], step[0], 0., ndata*2. , ierflg);
gMinuit->mnparm(1, "background yield" , vstart[1], step[1], 0., ndata*2. , ierflg);
printf(" --------------------------------------------------------- \n");
printf(" Now ready for minimization step \n --------------------------------------------------------- \n");
arglist[0] = 2000; // number of iteration
arglist[1] = 1.;
gMinuit->mnexcm("MIGRAD", arglist ,2,ierflg);
printf (" -------------------------------------------- \n");
printf("Finished. ierr = %2.2f \n", ierflg);
info.clear();
info_err.clear();
double para[NPAR+1],errpara[NPAR+1];
if ( ierflg == 0 )
{
for(int j=0; j<=NPAR-1;j++) {
gMinuit->GetParameter(j, para[j],errpara[j]);
para[NPAR] = dataColl.size();
info.push_back(para[j]);
info_err.push_back(errpara[j]);
printf("Parameter (yeild) %d = %f +- %f\n",j,para[j],errpara[j]);
}
printf(" fitted yield %2.3f \n", (para[0]+para[1])/ndata );
info.push_back(sigColl.size());
//do minos if fit sucessed.
// printf(" ---------------------------------------------------------\n");
// printf(" Now call for minos step \n");
示例13: fit_chi2
// -- main function
void fit_chi2(TH1D* dataInput, TH1D* sigTemplate, TH1D* bkgTemplate, std::string prefix, Double_t& sigFrac, Double_t& sigFrac_err)
{
gStyle->SetOptStat(kFALSE);
gStyle->SetCanvasColor(0);
gStyle->SetCanvasBorderMode(0);
gStyle->SetPadBorderMode(0);
gStyle->SetFrameBorderMode(0);
Double_t scale=1.;
data = (TH1D*)dataInput->Clone();
data->SetName("data");
data->SetLineColor(1);
data->SetMarkerColor(1);
data->SetXTitle("Fisher's isolation [GeV]");
data->Sumw2();
scale = 1.0/(Double_t)data->Integral(0,1000);
cout << "scale for data = " << scale << endl;
data->Scale(scale);
fit_result = (TH1D*)dataInput->Clone();
fit_result->SetName("fit_result");
fit_result->SetLineColor(8);
fit_result->SetMarkerColor(8);
fit_result->SetLineStyle(2);
fit_result->Sumw2();
fit_result->Reset();
signal_pos = (TH1D*)sigTemplate->Clone();
signal_pos->SetName("signal_pos");
signal_pos->SetLineColor(2);
signal_pos->SetMarkerColor(2);
signal_pos->SetFillColor(2);
signal_pos->SetXTitle("Fisher's isolation [GeV]");
signal_pos->Sumw2();
scale = 1.0/(Double_t)signal_pos->Integral(0,1000);
cout << "scale for signal template = " << scale << endl;
signal_pos->Scale(scale);
background_pos = (TH1D*)bkgTemplate->Clone();
background_pos->SetName("background_pos");
background_pos->SetLineColor(4);
background_pos->SetMarkerColor(4);
background_pos->SetFillColor(4);
background_pos->SetXTitle("Fisher's isolation [GeV]");
background_pos->Sumw2();
scale = 1.0/(Double_t)background_pos->Integral(0,1000);
cout << "scale for background template = " << scale << endl;
background_pos->Scale(scale);
TMinuit *gMinuit = new TMinuit(1); //initialize TMinuit with a maximum of 5 (1param??) params
gMinuit->SetFCN(fcn); // sets function to minimize: fcn is Chi2 with errors on templates
Double_t arglist[10];
Int_t ierflg = 0; // status flag, it is 0 when ereything goes fine
// -- sets error
arglist[0] = 1;
gMinuit->mnexcm("SET ERR", arglist ,1,ierflg);
Double_t vstart = 0.5;
Double_t step = 0.001;
gMinuit->mnparm(0, "fsig", vstart, step, 0,1,ierflg);
// Now ready for minimization step
arglist[0] = 1000;
arglist[1] = 0.01;
gMinuit->mnexcm("MIGRAD", arglist ,2,ierflg);
Double_t fsig=0;
Double_t fsigerr=0;
Double_t chi2 = 0;
if ( ierflg == 0 )
{
// Print results
Double_t amin,edm,errdef;
Int_t nvpar,nparx,icstat;
gMinuit->mnstat(amin,edm,errdef,nvpar,nparx,icstat);
gMinuit->mnprin(3,amin);
chi2 = gMinuit->fAmin;
gMinuit->GetParameter(0, fsig, fsigerr);
cout << "Fsig = " << fsig << " +- " << fsigerr << endl;
TCanvas* c1 = new TCanvas("c1","",500,500);
data->Draw();
TH1D* signal_display = (TH1D*)signal_pos->Clone();
signal_display->SetName("signal_display");
//.........这里部分代码省略.........
示例14: IfitBin
//___________________________________________________________________________
Double_t* IfitBin(TH1F* dataInput, TH1F* sigTemplate, TH1F* bkgTemplate,
int fit_data=1)
{
cout << "Input files are " << dataInput->GetName() << "\t" << sigTemplate->GetName() << "\t" << bkgTemplate->GetName() << endl;
TCanvas *c1 = new TCanvas("HF1", "Histos1", 0, 0, 600, 600);
dataCollBin.clear();
sigCollBin.clear();
bkgCollBin.clear();
Double_t* fitted = new Double_t[8];
fitted[0] = fitted[1] = fitted[2] = fitted[3] = fitted[4] = fitted[5] = fitted[6] = fitted[7] = 0.0;
TH1F *hsum = new TH1F();
float ntemplate = 1.;
float sigfrac = 0.1;
TH1F *hsum_norm = new TH1F();
TH1F *hdata;
TH1F *hsig = (TH1F*)sigTemplate->Clone();
hsig->SetName("hsig");
hsig->Rebin(6);
TH1F *hbkg = (TH1F*)bkgTemplate->Clone();
hbkg->SetName("hbkg");
hbkg->Rebin(6);
float ndata=0;
if ( fit_data>0 ) {
hdata = (TH1F*)dataInput->Clone();
hdata -> SetName("hdata");
ndata = hdata->Integral();
}else {
hsum = (TH1F*)hsig->Clone();
hsum->Add(hbkg,1);
cout << "For histogram " << sigTemplate->GetName() << " and " << bkgTemplate->GetName() << " sum = " <<
hsum->Integral() << endl;
if (hsum->Integral()>1.) ntemplate = hsum->Integral();
sigfrac = hsig->Integral()/ntemplate;
hsum_norm = (TH1F*)hsum->Clone();
hsum_norm->Scale(1./hsum->Integral());
hdata = (TH1F*)hsum_norm->Clone();
hdata -> SetName("hdata");
ndata=ntemplate;
hdata->FillRandom(hsum_norm, ndata);
}
if(ndata==0) {
printf(" --- no events in the fit \n");
return fitted;
}
printf(" --------- before the fit ------------- \n");
printf("Nsig %2.3f, Nbg %2.3f, Ntemplate %3.3f \n", hsig->Integral(), hbkg->Integral(), ntemplate);
// printf("Purity %2.3f, init size %4.3f, test sample size %4d\n", hsig->Integral()/hsum->Integral(), hsum->Integral(), ndata);
printf(" -------------------------------------- \n");
hdata->Rebin(6);
int nbins = hdata->GetNbinsX();
hsig->Scale(1./hsig->Integral());
hbkg->Scale(1./hbkg->Integral());
for (int ibin=1; ibin<=nbins; ibin++) {
dataCollBin.push_back(hdata->GetBinContent(ibin));
sigCollBin.push_back(hsig->GetBinContent(ibin));
bkgCollBin.push_back(hbkg->GetBinContent(ibin));
}
printf( " ----- Got %d, %d, %d events for fit ----- \n ", dataCollBin.size(),
sigCollBin.size(), bkgCollBin.size() );
if ( dataCollBin.size() != sigCollBin.size() || sigCollBin.size()!=bkgCollBin.size() ) {
printf(" error ... inconsistent hit collection size \n");
return fitted;
}
//--------------------------------------------------
//init parameters for fit
Double_t vstart[10] = {1., 1.};
vstart[0] = sigfrac*ndata;
vstart[1] = (1-sigfrac)*ndata;
TMinuit *gMinuit = new TMinuit(NPARBIN);
gMinuit->Command("SET STR 1");
gMinuit->SetFCN(fcnBin);
Double_t arglist[10];
Int_t ierflg = 0;
arglist[0] = 1;
gMinuit->mnexcm("SET ERR", arglist ,1,ierflg);
arglist[0] = 1;
gMinuit->mnexcm("SET PRINT", arglist ,1,ierflg);
Double_t step[] = { 0.1, 0.1,};
gMinuit->mnparm(0, "Signal yield" , vstart[0], step[0], 0., ndata*2. , ierflg);
gMinuit->mnparm(1, "background yield" , vstart[1], step[1], 0., ndata*2. , ierflg);
//.........这里部分代码省略.........
示例15: Ifit
//.........这里部分代码省略.........
printf(" -------------------------------------- \n");
printf( " ----- Got %d, %d, %d events for fit ----- \n ", dataColl.size(),
sigColl.size(), bkgColl.size() );
//--------------------------------------------------
//init parameters for fit
Double_t vstart[11] = {1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.};
vstart[0] = sigfrac*ndata;
vstart[1] = (1-sigfrac)*ndata;
for (int ii=0; ii<9; ii++) {
vstart[ii+2] = Para[ii]; //8 shape parameters
}
TMinuit *gMinuit = new TMinuit(NPAR);
gMinuit->Command("SET STR 1");
gMinuit->SetFCN(fcn);
Double_t arglist[11];
Int_t ierflg = 0;
arglist[0] = 1;
gMinuit->mnexcm("SET ERR", arglist ,1,ierflg);
arglist[0] = 1;
gMinuit->mnexcm("SET PRINT", arglist ,1,ierflg);
Double_t step[] = { 1.,1.,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,};
for ( int ii=0; ii<9; ii++){
printf(" para %d, %.5f, err %.5f \n", ii, Para[ii], Para_err[ii]);
}
float sigma = 3.;
gMinuit->mnparm(0, "Signal yield" , vstart[0], step[0], 0., ndata*2. , ierflg);
gMinuit->mnparm(1, "background yield" , vstart[1], step[1], 0., ndata*2. , ierflg);
// gMinuit->mnparm(2, "constant" , Para[0], 0.00, Para[0], Para[0] , ierflg);
// gMinuit->mnparm(3, "exp tail" , Para[1], 0.01, Para[1]-sigma*Para_err[1], Para[1]+sigma*Para_err[1], ierflg);
// gMinuit->mnparm(4, "exg mean" , Para[2], 0.01, Para[2]-sigma*Para_err[2], Para[2]+sigma*Para_err[2], ierflg);
// gMinuit->mnparm(5, "exg width" , Para[3], 0.01, Para[3]-sigma*Para_err[3], Para[3]+sigma*Para_err[3], ierflg);
// gMinuit->mnparm(6, "constant" , Para[4], 0.00, Para[4] , Para[4] , ierflg);
// gMinuit->mnparm(7, "bg exp turnon", Para[5], 0.01, Para[5]-sigma*Para_err[5], Para[5]+sigma*Para_err[5], ierflg);
// gMinuit->mnparm(8, "bg x offset ", Para[6], 0.01, Para[6]-sigma*Para_err[6], Para[6]+sigma*Para_err[6], ierflg);
// gMinuit->mnparm(9, "bg bend slope", Para[7], 0.01, 0.001 , 0.1 , ierflg);
// // gMinuit->mnparm(10, "bg bend power", Para[8], 0.01, Para[8]-sigma*Para_err[8], Para[8]+sigma*Para_err[8], ierflg);
// gMinuit->mnparm(10, "bg bend power", Para[8], 0.01, 0.5 , 5. , ierflg);
// gMinuit->mnparm(2, "constant" , Para[0], TMath::Abs(Para[0]*0.0) , Para[0], Para[0], ierflg);
// gMinuit->mnparm(3, "exp tail" , Para[1], TMath::Abs(Para[1]*0.01) , Para[1]-sigma*Para_err[1], Para[1]+sigma*Para_err[1], ierflg);
// // gMinuit->mnparm(3, "exp tail" , Para[1], TMath::Abs(Para[1]*0.1) , 0.8 , 1.3 , ierflg);
// gMinuit->mnparm(4, "exg mean" , Para[2], TMath::Abs(Para[2]*0.1) , 0.5 , 1.0 , ierflg);
// gMinuit->mnparm(5, "exg width" , Para[3], TMath::Abs(Para[3]*0.1) , 0.25 , 0.5 , ierflg);
// gMinuit->mnparm(6, "constant" , Para[4], TMath::Abs(Para[4]*0.0) , Para[4], Para[4], ierflg);
// gMinuit->mnparm(7, "bg exp turnon", Para[5], TMath::Abs(Para[5]*0.1) , -0.7 , -0.3 , ierflg);
// gMinuit->mnparm(8, "bg x offset ", Para[6], TMath::Abs(Para[6]*0.0) , -0.15 , -0.05 , ierflg);
// gMinuit->mnparm(9, "bg bend slope", Para[7], TMath::Abs(Para[7]*0.1) , 0.01 , 0.05 , ierflg);
// gMinuit->mnparm(10, "bg bend power", Para[8], TMath::Abs(Para[8]*0.1) , 0.5 , 1.5 , ierflg);
gMinuit->mnparm(2, "constant" , Para[0], 0.00, Para[0], Para[0] , ierflg);
gMinuit->mnparm(3, "exp tail" , Para[1], 0.00, Para[1]-sigma*Para_err[1], Para[1]+sigma*Para_err[1], ierflg);
gMinuit->mnparm(4, "exg mean" , Para[2], 0.00, Para[2]-sigma*Para_err[2], Para[2]+sigma*Para_err[2], ierflg);
gMinuit->mnparm(5, "exg width" , Para[3], 0.00, Para[3]-sigma*Para_err[3], Para[3]+sigma*Para_err[3], ierflg);
gMinuit->mnparm(6, "constant" , Para[4], 0.00, Para[4] , Para[4] , ierflg);
gMinuit->mnparm(7, "bg exp turnon", Para[5], 0.00, Para[5]-sigma*Para_err[5], Para[5]+sigma*Para_err[5], ierflg);
gMinuit->mnparm(8, "bg x offset ", Para[6], 0.00, Para[6]-sigma*Para_err[6], Para[6]+sigma*Para_err[6], ierflg);
gMinuit->mnparm(9, "bg bend slope", Para[7], 0.00, 0.001 , 0.1 , ierflg);