本文整理汇总了C++中TIntermTyped::isScalar方法的典型用法代码示例。如果您正苦于以下问题:C++ TIntermTyped::isScalar方法的具体用法?C++ TIntermTyped::isScalar怎么用?C++ TIntermTyped::isScalar使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TIntermTyped
的用法示例。
在下文中一共展示了TIntermTyped::isScalar方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: validateIndexing
bool ValidateLimitations::validateIndexing(TIntermBinary* node)
{
ASSERT((node->getOp() == EOpIndexDirect) ||
(node->getOp() == EOpIndexIndirect));
bool valid = true;
TIntermTyped* index = node->getRight();
// The index expression must have integral type.
if (!index->isScalar() || (index->getBasicType() != EbtInt)) {
error(index->getLine(),
"Index expression must have integral type",
index->getCompleteString().c_str());
valid = false;
}
// The index expession must be a constant-index-expression unless
// the operand is a uniform in a vertex shader.
TIntermTyped* operand = node->getLeft();
bool skip = (mShaderType == SH_VERTEX_SHADER) &&
(operand->getQualifier() == EvqUniform);
if (!skip && !isConstIndexExpr(index)) {
error(index->getLine(), "Index expression must be constant", "[]");
valid = false;
}
return valid;
}
示例2: scalarizeArgs
void ScalarizeVecAndMatConstructorArgs::scalarizeArgs(
TIntermAggregate *aggregate, bool scalarizeVector, bool scalarizeMatrix)
{
ASSERT(aggregate);
int size = 0;
switch (aggregate->getOp())
{
case EOpConstructVec2:
case EOpConstructBVec2:
case EOpConstructIVec2:
size = 2;
break;
case EOpConstructVec3:
case EOpConstructBVec3:
case EOpConstructIVec3:
size = 3;
break;
case EOpConstructVec4:
case EOpConstructBVec4:
case EOpConstructIVec4:
case EOpConstructMat2:
size = 4;
break;
case EOpConstructMat2x3:
case EOpConstructMat3x2:
size = 6;
break;
case EOpConstructMat2x4:
case EOpConstructMat4x2:
size = 8;
break;
case EOpConstructMat3:
size = 9;
break;
case EOpConstructMat3x4:
case EOpConstructMat4x3:
size = 12;
break;
case EOpConstructMat4:
size = 16;
break;
default:
break;
}
TIntermSequence *sequence = aggregate->getSequence();
TIntermSequence original(*sequence);
sequence->clear();
for (size_t ii = 0; ii < original.size(); ++ii)
{
ASSERT(size > 0);
TIntermTyped *node = original[ii]->getAsTyped();
ASSERT(node);
TString varName = createTempVariable(node);
if (node->isScalar())
{
TIntermSymbol *symbolNode =
new TIntermSymbol(-1, varName, node->getType());
sequence->push_back(symbolNode);
size--;
}
else if (node->isVector())
{
if (scalarizeVector)
{
int repeat = std::min(size, node->getNominalSize());
size -= repeat;
for (int index = 0; index < repeat; ++index)
{
TIntermSymbol *symbolNode =
new TIntermSymbol(-1, varName, node->getType());
TIntermBinary *newNode = ConstructVectorIndexBinaryNode(
symbolNode, index);
sequence->push_back(newNode);
}
}
else
{
TIntermSymbol *symbolNode =
new TIntermSymbol(-1, varName, node->getType());
sequence->push_back(symbolNode);
size -= node->getNominalSize();
}
}
else
{
ASSERT(node->isMatrix());
if (scalarizeMatrix)
{
int colIndex = 0, rowIndex = 0;
int repeat = std::min(size, node->getCols() * node->getRows());
size -= repeat;
while (repeat > 0)
{
TIntermSymbol *symbolNode =
new TIntermSymbol(-1, varName, node->getType());
TIntermBinary *newNode = ConstructMatrixIndexBinaryNode(
symbolNode, colIndex, rowIndex);
sequence->push_back(newNode);
rowIndex++;
if (rowIndex >= node->getRows())
//.........这里部分代码省略.........
示例3: ir_add_unary_math
// Add one node as the parent of another that it operates on.
TIntermTyped* ir_add_unary_math(TOperator op, TIntermNode* childNode, TSourceLoc line, TParseContext& ctx)
{
TIntermUnary* node;
TIntermTyped* child = childNode->getAsTyped();
if (child == 0)
{
ctx.infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
return 0;
}
switch (op)
{
case EOpLogicalNot:
if (!child->isScalar())
return 0;
break;
case EOpPostIncrement:
case EOpPreIncrement:
case EOpPostDecrement:
case EOpPreDecrement:
case EOpNegative:
if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
return 0;
default: break;
}
//
// Do we need to promote the operand?
//
// Note: Implicit promotions were removed from the language.
//
TBasicType newType = EbtVoid;
switch (op)
{
case EOpConstructInt: newType = EbtInt; break;
case EOpConstructBool: newType = EbtBool; break;
case EOpConstructFloat: newType = EbtFloat; break;
case EOpLogicalNot: newType = EbtBool; break;
default: break;
}
if (newType != EbtVoid)
{
child = ir_add_conversion(op, TType(newType, child->getPrecision(), EvqTemporary, child->getColsCount(), child->getRowsCount(),
child->isMatrix(),
child->isArray()),
child, ctx.infoSink);
if (child == 0)
return 0;
}
//
// For constructors, we are now done, it's all in the conversion.
//
switch (op)
{
case EOpConstructInt:
case EOpConstructBool:
case EOpConstructFloat:
return child;
default: break;
}
TIntermConstant* childConst = child->getAsConstant();
//
// Make a new node for the operator.
//
node = new TIntermUnary(op);
if (line.line == 0)
line = child->getLine();
node->setLine(line);
node->setOperand(child);
if (! node->promote(ctx))
return 0;
//
// See if we can fold constants
if (childConst)
{
TIntermConstant* FoldUnaryConstantExpression(TOperator op, TIntermConstant* node);
TIntermConstant* res = FoldUnaryConstantExpression(node->getOp(), childConst);
if (res)
{
delete node;
return res;
}
}
return node;
}