本文整理汇总了C++中TIntV::Trunc方法的典型用法代码示例。如果您正苦于以下问题:C++ TIntV::Trunc方法的具体用法?C++ TIntV::Trunc怎么用?C++ TIntV::Trunc使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TIntV
的用法示例。
在下文中一共展示了TIntV::Trunc方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: GetEntClustV
void TSkyGridEnt::GetEntClustV(const TSkyGridBs* SkyGridBs,
const uint64& MnTm, const int& MnDocs, const int& MxDocs, const int& Clusts,
TVec<TStrFltPrV>& EntNmWgtPrVV) const {
EntNmWgtPrVV.Clr();
// create bow
PBowDocBs BowDocBs=TBowDocBs::New();
// collect documents
TIntV DocIdV; GetDocIdV(SkyGridBs, MnTm, 0, DocIdV);
DocIdV.Reverse(); DocIdV.Shuffle(TRnd(1)); DocIdV.Trunc(MxDocs);
if (DocIdV.Len()<MnDocs){return;}
for (int DocN=0; DocN<DocIdV.Len(); DocN++){
int DocId=DocIdV[DocN];
PSkyGridDoc Doc=SkyGridBs->GetDoc(DocId);
// create vector of entity-weights
TIntFltPrV WIdWgtPrV;
for (int EntN=0; EntN<Doc->GetEnts(); EntN++){
int EntId; int EntFq; Doc->GetEntNmFq(EntN, EntId, EntFq);
TStr EntNm=SkyGridBs->GetEntNm(EntId);
int EntWId=BowDocBs->AddWordStr(EntNm);
WIdWgtPrV.Add(TIntFltPr(EntWId, EntFq));
}
// create bow-document
int DId=BowDocBs->AddDoc(TInt::GetStr(DocId), TStrV(), WIdWgtPrV);
TStr DocDescStr=Doc->GetTitleStr();
BowDocBs->PutDocDescStr(DId, DocDescStr);
}
// k-means clustering
PBowSim BowSim=TBowSim::New(bstCos); // similarity object
TBowWordWgtType WordWgtType=bwwtNrmTFIDF; // define weighting
PBowDocPart BowDocPart=TBowClust::GetKMeansPart(
TNotify::StdNotify, // log output
BowDocBs, // document data
BowSim, // similarity function
TRnd(1), // random generator
Clusts, // number of clusters
1, // trials per k-means
1, // convergence epsilon for k-means
1, // min. documents per cluster
WordWgtType, // word weighting
0, // cut-word-weights percentage
0); // minimal word frequency
EntNmWgtPrVV.Clr();
for (int ClustN=0; ClustN<BowDocPart->GetClusts(); ClustN++){
PBowDocPartClust Clust=BowDocPart->GetClust(ClustN);
TStrFltPrV WordStrWgtPrV;
Clust->GetTopWordStrWgtPrV(BowDocBs, 25, 0.5, WordStrWgtPrV);
EntNmWgtPrVV.Add(WordStrWgtPrV);
}
//BowDocPart->SaveTxt("Clusts.Txt", BowDocBs, true, 25, 0.5, false);
}
示例2: LoadCsv
PBowDocBs TFtrGenBs::LoadCsv(TStr& FNm, const int& ClassId,
const TIntV& IgnoreIdV, const int& TrainLen) {
// feature generators
PFtrGenBs FtrGenBs = TFtrGenBs::New();
// CSV parsing stuff
PSIn SIn = TFIn::New(FNm);
char SsCh = ' '; TStrV FldValV;
// read the headers and initialise the feature generators
TSs::LoadTxtFldV(ssfCommaSep, SIn, SsCh, FldValV, false);
for (int FldValN = 0; FldValN < FldValV.Len(); FldValN++) {
const TStr& FldVal = FldValV[FldValN];
if (FldValN == ClassId) {
if (FldVal == "NOM") {
FtrGenBs->PutClsFtrGen(TFtrGenNominal::New());
} else if (FldVal == "MULTI-NOM") {
FtrGenBs->PutClsFtrGen(TFtrGenMultiNom::New());
} else {
TExcept::Throw("Wrong class type '" + FldVal + "', should be NOM or MULTI-NOM!");
}
} else if (!IgnoreIdV.IsIn(FldValN)) {
if (FldVal == TFtrGenNumeric::GetType()) {
FtrGenBs->AddFtrGen(TFtrGenNumeric::New());
} else if (FldVal == TFtrGenNominal::GetType()) {
FtrGenBs->AddFtrGen(TFtrGenNominal::New());
} else if (FldVal == TFtrGenToken::GetType()) {
FtrGenBs->AddFtrGen(TFtrGenToken::New(
TSwSet::New(swstNone), TStemmer::New(stmtNone)));
} else if (FldVal == TFtrGenSparseNumeric::GetType()) {
FtrGenBs->AddFtrGen(TFtrGenSparseNumeric::New());
} else if (FldVal == TFtrGenMultiNom::GetType()) {
FtrGenBs->AddFtrGen(TFtrGenMultiNom::New());
} else {
TExcept::Throw("Wrong type '" + FldVal + "'!");
}
}
}
const int Flds = FldValV.Len();
// read the lines and feed them to the feature generators
int Recs = 0;
while (!SIn->Eof()) {
if (Recs == TrainLen) { break; }
Recs++; printf("%7d\r", Recs);
TSs::LoadTxtFldV(ssfCommaSep, SIn, SsCh, FldValV, false);
// make sure line still has the same number of fields as the header
EAssertR(FldValV.Len() == Flds,
TStr::Fmt("Wrong number of fields in line %d! Found %d and expected %d!",
Recs + 1, FldValV.Len(), Flds));
// go over lines
try {
TStrV FtrValV;
for (int FldValN = 0; FldValN < FldValV.Len(); FldValN++) {
const TStr& FldVal = FldValV[FldValN];
if (FldValN == ClassId) {
FtrGenBs->UpdateCls(FldVal);
} else if (!IgnoreIdV.IsIn(FldValN)) {
FtrValV.Add(FldVal);
}
}
FtrGenBs->Update(FtrValV);
} catch (PExcept Ex) {
TExcept::Throw(TStr::Fmt("Error in line %d: '%s'!",
Recs+1, Ex->GetMsgStr().CStr()));
}
}
// read the file again and feed it to the training set
PBowDocBs BowDocBs = FtrGenBs->MakeBowDocBs();
// we read and ignore the headers since we parsed them already
SIn = TFIn::New(FNm); SsCh = ' ';
TSs::LoadTxtFldV(ssfCommaSep, SIn, SsCh, FldValV, false);
// read the lines and feed them to the training set
Recs = 0;
while (!SIn->Eof()){
Recs++; printf("%7d\r", Recs);
TSs::LoadTxtFldV(ssfCommaSep, SIn, SsCh, FldValV, false);
// make sure line still has the same number of fields as the header
EAssertR(FldValV.Len() == Flds,
TStr::Fmt("Wrong number of fields in line %s! Found %d and expected %d!",
Recs + 1, FldValV.Len(), Flds));
// go over lines and construct the sparse vector
TStrV FtrValV; TStr ClsFtrVal;
try {
for (int FldValN = 0; FldValN < FldValV.Len(); FldValN++) {
const TStr& FldVal = FldValV[FldValN];
if (FldValN == ClassId) {
ClsFtrVal = FldVal;
} else if (!IgnoreIdV.IsIn(FldValN)) {
FtrValV.Add(FldVal);
}
}
} catch (PExcept Ex) {
TExcept::Throw(TStr::Fmt("Error in line %d: '%s'!",
Recs+1, Ex->GetMsgStr().CStr()));
}
// add the feature vector to trainsets
FtrGenBs->AddBowDoc(BowDocBs, TStr::Fmt("Line-%d", Recs), FtrValV, ClsFtrVal);
}
// prepare training and testing doc ids
TIntV AllDIdV; BowDocBs->GetAllDIdV(AllDIdV); IAssert(AllDIdV.IsSorted());
TIntV TrainDIdV = AllDIdV; TrainDIdV.Trunc(TrainLen);
//.........这里部分代码省略.........