本文整理汇总了C++中TH2I::GetNbinsY方法的典型用法代码示例。如果您正苦于以下问题:C++ TH2I::GetNbinsY方法的具体用法?C++ TH2I::GetNbinsY怎么用?C++ TH2I::GetNbinsY使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TH2I
的用法示例。
在下文中一共展示了TH2I::GetNbinsY方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ExtractTrackBasedTiming
void ExtractTrackBasedTiming(TString fileName = "hd_root.root", int runNumber = 10390, TString variation = "default", bool verbose = false,TString prefix = ""){
// set "prefix" in case you want to ship the txt files elsewhere...
cout << "Performing Track Matched timing fits for File: " << fileName.Data() << " Run: " << runNumber << " Variation: " << variation.Data() << endl;
ExtractTrackBasedTimingNS::thisFile = TFile::Open( fileName , "UPDATE");
if (ExtractTrackBasedTimingNS::thisFile == 0) {
cout << "Unable to open file " << fileName.Data() << "...Exiting" << endl;
return;
}
//We need the existing constants, The best we can do here is just read them from the file.
vector<double> sc_tdc_time_offsets;
vector<double> sc_fadc_time_offsets;
vector<double> tof_tdc_time_offsets;
vector<double> tof_fadc_time_offsets;
vector<double> tagm_tdc_time_offsets;
vector<double> tagm_fadc_time_offsets;
vector<double> tagh_tdc_time_offsets;
vector<double> tagh_fadc_time_offsets;
vector<double> tagh_counter_quality;
double sc_t_base_fadc, sc_t_base_tdc;
double tof_t_base_fadc, tof_t_base_tdc;
double bcal_t_base_fadc, bcal_t_base_tdc;
double tagm_t_base_fadc, tagm_t_base_tdc;
double tagh_t_base_fadc, tagh_t_base_tdc;
double fdc_t_base_fadc, fdc_t_base_tdc;
double fcal_t_base;
double cdc_t_base;
double RF_Period;
cout << "Grabbing CCDB constants..." << endl;
// Base times
GetCCDBConstants1("/CDC/base_time_offset" ,runNumber, variation, cdc_t_base);
GetCCDBConstants1("/FCAL/base_time_offset",runNumber, variation, fcal_t_base);
GetCCDBConstants1("/PHOTON_BEAM/RF/beam_period",runNumber, variation, RF_Period);
GetCCDBConstants2("/FDC/base_time_offset" ,runNumber, variation, fdc_t_base_fadc, fdc_t_base_tdc);
GetCCDBConstants2("/BCAL/base_time_offset" ,runNumber, variation, bcal_t_base_fadc, bcal_t_base_tdc);
GetCCDBConstants2("/PHOTON_BEAM/microscope/base_time_offset" ,runNumber, variation, tagm_t_base_fadc, tagm_t_base_tdc);
GetCCDBConstants2("/PHOTON_BEAM/hodoscope/base_time_offset" ,runNumber, variation, tagh_t_base_fadc, tagh_t_base_tdc);
GetCCDBConstants2("/START_COUNTER/base_time_offset" ,runNumber, variation, sc_t_base_fadc, sc_t_base_tdc);
GetCCDBConstants2("/TOF/base_time_offset" ,runNumber, variation, tof_t_base_fadc, tof_t_base_tdc);
// Per channel
//GetCCDBConstants("/BCAL/TDC_offsets" ,runNumber, variation, bcal_tdc_offsets);
//GetCCDBConstants("/FCAL/timing_offsets" ,runNumber, variation, fcal_adc_offsets);
GetCCDBConstants("/START_COUNTER/adc_timing_offsets" ,runNumber, variation, sc_fadc_time_offsets);
GetCCDBConstants("/START_COUNTER/tdc_timing_offsets" ,runNumber, variation, sc_tdc_time_offsets);
GetCCDBConstants("/PHOTON_BEAM/microscope/fadc_time_offsets" ,runNumber, variation, tagm_fadc_time_offsets,3);// Interested in 3rd column
GetCCDBConstants("/PHOTON_BEAM/microscope/tdc_time_offsets" ,runNumber, variation, tagm_tdc_time_offsets,3);
GetCCDBConstants("/PHOTON_BEAM/hodoscope/fadc_time_offsets" ,runNumber, variation, tagh_fadc_time_offsets,2);// Interested in 2nd column
GetCCDBConstants("/PHOTON_BEAM/hodoscope/tdc_time_offsets" ,runNumber, variation, tagh_tdc_time_offsets,2);
GetCCDBConstants("/PHOTON_BEAM/hodoscope/counter_quality" ,runNumber, variation, tagh_counter_quality,2);
GetCCDBConstants("/TOF/adc_timing_offsets",runNumber, variation, tof_fadc_time_offsets);
GetCCDBConstants("/TOF/timing_offsets",runNumber, variation, tof_tdc_time_offsets);
cout << "CDC base times = " << cdc_t_base << endl;
cout << "FCAL base times = " << fcal_t_base << endl;
cout << "FDC base times = " << fdc_t_base_fadc << ", " << fdc_t_base_tdc << endl;
cout << "BCAL base times = " << bcal_t_base_fadc << ", " << bcal_t_base_tdc << endl;
cout << "SC base times = " << sc_t_base_fadc << ", " << sc_t_base_tdc << endl;
cout << "TOF base times = " << tof_t_base_fadc << ", " << tof_t_base_tdc << endl;
cout << "TAGH base times = " << tagh_t_base_fadc << ", " << tagh_t_base_tdc << endl;
cout << "TAGM base times = " << tagm_t_base_fadc << ", " << tagm_t_base_tdc << endl;
cout << endl;
cout << "RF_Period = " << RF_Period << endl;
cout << endl;
cout << "Done grabbing CCDB constants...Entering fits..." << endl;
// Do our final step in the timing alignment with tracking
//When the RF is present we can try to simply pick out the correct beam bucket for each of the runs
//First just a simple check to see if we have the appropriate data
bool useRF = false;
TH1I *testHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "TAGH_TDC_RF_Compare","Counter ID 001");
if (testHist != NULL){ // Not great since we rely on channel 1 working, but can be craftier later.
cout << "Using RF Times for Calibration" << endl;
useRF = true;
}
ofstream outFile;
TH2I *thisHist;
thisHist = ExtractTrackBasedTimingNS::Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGM - SC Target Time");
if (useRF) thisHist = ExtractTrackBasedTimingNS::Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGM - RFBunch Time");
if (thisHist != NULL){
//Statistics on these histograms are really quite low we will have to rebin and do some interpolation
outFile.open(prefix + "tagm_tdc_timing_offsets.txt", ios::out | ios::trunc);
outFile.close(); // clear file
outFile.open(prefix + "tagm_adc_timing_offsets.txt", ios::out | ios::trunc);
outFile.close(); // clear file
int nBinsX = thisHist->GetNbinsX();
int nBinsY = thisHist->GetNbinsY();
TH1D * selectedTAGMOffset = new TH1D("selectedTAGMOffset", "Selected TAGM Offset; Column; Offset [ns]", nBinsX, 0.5, nBinsX + 0.5);
TH1I * TAGMOffsetDistribution = new TH1I("TAGMOffsetDistribution", "TAGM Offset; TAGM Offset [ns]; Entries", 500, -250, 250);
for (int i = 1 ; i <= nBinsX; i++){
TH1D *projY = thisHist->ProjectionY("temp", i, i);
// Scan over the histogram
//chose the correct number of bins based on the histogram
float nsPerBin = (projY->GetBinCenter(projY->GetNbinsX()) - projY->GetBinCenter(1)) / projY->GetNbinsX();
//.........这里部分代码省略.........
示例2: ExtractTrackBasedTiming
//.........这里部分代码省略.........
inFile.close();
inFile.open(inputPrefix + "cdc_base_time.txt");
if (inFile.is_open()){
while (getline (inFile, line)){
istringstream iss(line);
iss>>cdc_t_base;
}
}
inFile.close();
// Do our final step in the timing alignment with tracking
//When the RF is present we can try to simply pick out the correct beam bucket for each of the runs
//First just a simple check to see if we have the appropriate data
bool useRF = false;
double RF_Period = 4.0080161;
TH1I *testHist = Get1DHistogram("HLDetectorTiming", "TAGH_TDC_RF_Compare","Counter ID 001");
if (testHist != NULL){ // Not great since we rely on channel 1 working, but can be craftier later.
useRF = true;
}
ofstream outFile;
TH2I *thisHist;
thisHist = Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGM - SC Target Time");
if (useRF) thisHist = Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGM - RFBunch Time");
if (thisHist != NULL){
//Statistics on these histograms are really quite low we will have to rebin and do some interpolation
outFile.open(prefix + "tagm_tdc_timing_offsets.txt", ios::out | ios::trunc);
outFile.close(); // clear file
outFile.open(prefix + "tagm_adc_timing_offsets.txt", ios::out | ios::trunc);
outFile.close(); // clear file
int nBinsX = thisHist->GetNbinsX();
int nBinsY = thisHist->GetNbinsY();
TH1D * selectedTAGMOffset = new TH1D("selectedTAGMOffset", "Selected TAGM Offset; Column; Offset [ns]", nBinsX, 0.5, nBinsX + 0.5);
TH1I * TAGMOffsetDistribution = new TH1I("TAGMOffsetDistribution", "TAGM Offset; TAGM Offset [ns]; Entries", 500, -250, 250);
for (int i = 1 ; i <= nBinsX; i++){
TH1D *projY = thisHist->ProjectionY("temp", i, i);
// Scan over the histogram
//chose the correct number of bins based on the histogram
float nsPerBin = (projY->GetBinCenter(projY->GetNbinsX()) - projY->GetBinCenter(1)) / projY->GetNbinsX();
float timeWindow = 3; //ns (Full Width)
int binWindow = int(timeWindow / nsPerBin);
double maxEntries = 0;
double maxMean = 0;
for (int j = 1 ; j <= projY->GetNbinsX();j++){
int minBin = j;
int maxBin = (j + binWindow) <= projY->GetNbinsX() ? (j + binWindow) : projY->GetNbinsX();
double sum = 0, nEntries = 0;
for (int bin = minBin; bin <= maxBin; bin++){
sum += projY->GetBinContent(bin) * projY->GetBinCenter(bin);
nEntries += projY->GetBinContent(bin);
if (bin == maxBin){
if (nEntries > maxEntries) {
maxMean = sum / nEntries;
maxEntries = nEntries;
}
}
}
}
//In the case there is RF, our job is to pick just the number of the correct beam bunch, so that's really all we need.
if(useRF) {
int beamBucket = int((maxMean / RF_Period) + 0.5); // +0.5 to handle rounding correctly
selectedTAGMOffset->SetBinContent(i, beamBucket);
TAGMOffsetDistribution->Fill(beamBucket);
}