本文整理汇总了C++中TGraph2D::SetPoint方法的典型用法代码示例。如果您正苦于以下问题:C++ TGraph2D::SetPoint方法的具体用法?C++ TGraph2D::SetPoint怎么用?C++ TGraph2D::SetPoint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TGraph2D
的用法示例。
在下文中一共展示了TGraph2D::SetPoint方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: fillGraphsFromFilesDeltaNLL
void fillGraphsFromFilesDeltaNLL( const TString& par1name,
const TString& par2name,
const vector<TString>& fnames,
vector<string>& keys,
map<string,TGraph2D *>& m_graphs)
{
std::cout << "fillGraphsFromFilesDeltaNLL 1" << std::endl;
keys.push_back("exp68");
keys.push_back("exp95");
keys.push_back("exp99");
// uncommented below to plot observed!
keys.push_back("obs95");
TGraph2D *grobs = new TGraph2D();
TGraph2D *grexp = new TGraph2D();
m_graphs["obs95"] = grobs;
m_graphs["exp95"] = grexp;
grobs->SetName("graph2Dobs95");
grexp->SetName("graph2Dexp95");
Int_t nobs=0, nexp=0;
for( size_t i=0; i<fnames.size(); i++) {
TFile *f = new TFile(fnames[i]);
TTree *t = (TTree *) f->Get("limit");
if (!t) {
std::cerr<<"TFile "<<f->GetName()<<" does not contain the tree"<<std::endl;
return;
}
cout << fnames[i] << " has limit tree with " << t->GetEntries() << " entries." << endl;
Float_t deltaNLL, par1, par2;
Int_t iToy;
t->SetBranchAddress("iToy", &iToy);
t->SetBranchAddress("deltaNLL", &deltaNLL);
t->SetBranchAddress(par1name, &par1);
t->SetBranchAddress(par2name, &par2);
for (size_t j = 0, n = t->GetEntries(); j < n; ++j) {
t->GetEntry(j);
printf ("%d\r",j);
if( !iToy){
// cout <<"!iToy" << endl;
grobs->SetPoint(nobs++,par1,par2,2*deltaNLL);
// cout <<"grobs->SetPoint("<<nobs++<<","<<par1<<","<< par2<< ","<< 2*deltaNLL << endl;
}
else if (iToy == -1) {
// cout <<"iToy == -1" << endl;
grexp->SetPoint(nexp++,par1,par2,2*deltaNLL);
}
else {
cerr << "Unexpected value for iToy, = " << iToy << endl;
exit(-1);
}
} // tree entry loop
f->Close();
delete f;
} // file loop
cout << endl;
m_graphs["exp68"] = (TGraph2D*)grexp->Clone("graph2Dexp68");
m_graphs["exp99"] = (TGraph2D*)grexp->Clone("graph2Dexp99");
#if 0
TCanvas *canv = new TCanvas("tester","tester",500,500);
cout << grexp->GetN()<<" points. " <<endl;
grexp->Draw("TRI"); // cont 5z list");
#endif
} // fillGraphsFromFilesDeltaNLL
示例2: view_SMEvents_3D_from_Hits
void view_SMEvents_3D_from_Hits() {
/*** Displays an 3D occupancy plot for each SM Event. (stop mode event)
Can choose which SM event to start at. (find "CHOOSE THIS" in this script)
Input file must be a Hits file (_interpreted_Hits.root file).
***/
gROOT->Reset();
// Setting up file, treereader, histogram
TFile *f = new TFile("/home/pixel/pybar/tags/2.0.2_new/pyBAR-master/pybar/module_202_new/101_module_202_new_stop_mode_ext_trigger_scan_interpreted_Hits.root");
if (!f) { // if we cannot open the file, print an error message and return immediately
cout << "Error: cannot open the root file!\n";
//return;
}
TTreeReader *reader = new TTreeReader("Table", f);
TTreeReaderValue<UInt_t> h5_file_num(*reader, "h5_file_num");
TTreeReaderValue<Long64_t> event_number(*reader, "event_number");
TTreeReaderValue<UChar_t> tot(*reader, "tot");
TTreeReaderValue<UChar_t> relative_BCID(*reader, "relative_BCID");
TTreeReaderValue<Long64_t> SM_event_num(*reader, "SM_event_num");
TTreeReaderValue<Double_t> x(*reader, "x");
TTreeReaderValue<Double_t> y(*reader, "y");
TTreeReaderValue<Double_t> z(*reader, "z");
// Initialize the canvas and graph
TCanvas *c1 = new TCanvas("c1","3D Occupancy for Specified SM Event", 1000, 10, 900, 550);
c1->SetRightMargin(0.25);
TGraph2D *graph = new TGraph2D();
// Variables used to loop the main loop
bool endOfReader = false; // if reached end of the reader
bool quit = false; // if pressed q
int smEventNum = 1; // the current SM-event CHOOSE THIS to start at desired SM event number
// Main Loop (loops for every smEventNum)
while (!endOfReader && !quit) {
// Variables used in this main loop
int startEntryNum = 0;
int endEntryNum = 0;
string histTitle = "3D Occupancy for SM Event ";
string inString = "";
bool fitFailed = false; // true if the 3D fit failed
bool lastEvent = false;
// Declaring some important output values for the current graph and/or line fit
int numEntries = 0;
double sumSquares = 0;
// Get startEntryNum and endEntryNum
startEntryNum = getEntryNumWithSMEventNum(reader, smEventNum);
endEntryNum = getEntryNumWithSMEventNum(reader, smEventNum + 1);
if (startEntryNum == -2) { // can't find the smEventNum
cout << "Error: There should not be any SM event numbers that are missing." << "\n";
} else if (startEntryNum == -3) {
endOfReader = true;
break;
} else if (endEntryNum == -3) { // assuming no SM event nums are skipped
endEntryNum = reader->GetEntries(false);
lastEvent = true;
}
// Fill TGraph with points and set title and axes
graph = new TGraph2D(); // create a new TGraph to refresh
reader->SetEntry(startEntryNum);
for (int i = 0; i < endEntryNum - startEntryNum; i++) {
graph->SetPoint(i, (*x - 0.001), (*y + 0.001), (*z - 0.001));
endOfReader = !(reader->Next());
}
histTitle.append(to_string(smEventNum));
graph->SetTitle(histTitle.c_str());
graph->GetXaxis()->SetTitle("x (mm)");
graph->GetYaxis()->SetTitle("y (mm)");
graph->GetZaxis()->SetTitle("z (mm)");
graph->GetXaxis()->SetLimits(0, 20); // ROOT is buggy, x and y use setlimits()
graph->GetYaxis()->SetLimits(-16.8, 0); // but z uses setrangeuser()
graph->GetZaxis()->SetRangeUser(0, 40.96);
c1->SetTitle(histTitle.c_str());
// 3D Fit, display results, draw graph and line fit, only accept "good" events, get input
if (!endOfReader || lastEvent) {
// Display some results
numEntries = graph->GetN();
cout << "Current SM Event Number: " << smEventNum << "\n";
cout << "Number of entries: " << numEntries << "\n";
// Starting the fit. First, get decent starting parameters for the fit - do two 2D fits (one for x vs z, one for y vs z)
TGraph *graphZX = new TGraph();
TGraph *graphZY = new TGraph();
reader->SetEntry(startEntryNum);
for (int i = 0; i < endEntryNum - startEntryNum; i++) {
graphZX->SetPoint(i, (*z - 0.001), (*x + 0.001));
graphZY->SetPoint(i, (*z - 0.001), (*y + 0.001));
//.........这里部分代码省略.........
示例3: makeLikelihood
void makeLikelihood(){
gSystem->Load("libHiggsAnalysisCombinedLimit.so");
//TFile *fi = TFile::Open("lduscan_neg_ext/3D/lduscan_neg_ext_3D.root");
TFile *fi = TFile::Open("allthepoints.root");
TTree *tree = (TTree*)fi->Get("limit");
//TTree *tree = new TTree("tree_vals","tree_vals");
// ------------------------------ THIS IS WHERE WE BUILD THE SPLINE ------------------------ //
// Create 2 Real-vars, one for each of the parameters of the spline
// The variables MUST be named the same as the corresponding branches in the tree
RooRealVar ldu("lambda_du","lambda_du",0.1,-2.5,2.5);
RooRealVar lVu("lambda_Vu","lambda_Vu",0.1,0,3);
RooRealVar kuu("kappa_uu","kappa_uu",0.1,0,3);
RooSplineND *spline = new RooSplineND("spline","spline",RooArgList(ldu,lVu,kuu),tree,"deltaNLL",1.,true,"deltaNLL<1000 && TMath::Abs(quantileExpected)!=1 && TMath::Abs(quantileExpected)!=0");
// ----------------------------------------------------------------------------------------- //
//TGraph *gr = spline->getGraph("x",0.1); // Return 1D graph. Will be a slice of the spline for fixed y generated at steps of 0.1
fOut = new TFile("outplots-2hdm-neg-fine-mssm-final-try2.root","RECREATE");
// Plot the 2D spline
TGraph2D *gr = new TGraph2D(); gr->SetName("type1");
TGraph2D *gr2 = new TGraph2D(); gr2->SetName("type2");
TGraph2D *gr_ldu = new TGraph2D(); gr_ldu->SetName("ldu");
TGraph2D *gr_lVu = new TGraph2D(); gr_lVu->SetName("lVu");
TGraph2D *gr_kuu = new TGraph2D(); gr_kuu->SetName("kuu");
TGraph2D *gr2_ldu = new TGraph2D(); gr2_ldu->SetName("ldu_2");
TGraph2D *gr2_lVu = new TGraph2D(); gr2_lVu->SetName("lVu_2");
TGraph2D *gr2_kuu = new TGraph2D(); gr2_kuu->SetName("kuu_2");
TGraph2D *gr_t1_lVu_V_kuu = new TGraph2D(); gr_t1_lVu_V_kuu->SetName("t1_lVu_V_kuu");
TGraph2D *gr_mssm_ldu = new TGraph2D(); gr_mssm_ldu->SetName("mssm_ldu");
TGraph2D *gr_mssm_lVu = new TGraph2D(); gr_mssm_lVu->SetName("mssm_lVu");
TGraph2D *gr_mssm_kuu = new TGraph2D(); gr_mssm_kuu->SetName("mssm_kuu");
TGraph2D *g_FFS = new TGraph2D(); g_FFS->SetName("ffs_kuu1");
double x,y,z;
double mintF = 10000;
int pt=0 ;
/*
for (double x=-1.6;x<=1.6;x+=0.05){
for (double y=0.5;y<=1.5;y+=0.05){
ldu.setVal(x);
lVu.setVal(y);
kuu.setVal(1);
double dnll2 = 2*spline->getVal();
if (dnll2 < mintF) mintF = dnll2;
g_FFS->SetPoint(pt,x,y,dnll2);
pt++;
}
}
*/
TGraph2D *gcvcf = new TGraph2D(); gcvcf->SetName("cvcf");
TGraph2D *gcvcf_kuu = new TGraph2D(); gcvcf_kuu->SetName("cvcf_kuu");
TGraph2D *gcvcf_lVu = new TGraph2D(); gcvcf_lVu->SetName("cvcf_lVu");
double mintkvkf = 10000;
int pt=0 ;
if (doXCHECK){
// Sanity check, for ldu = 1, we should resolve kv kf ?
//
for (double cv=0.5;cv<=1.4;cv+=0.05){
for (double cf=0.3;cf<=1.7;cf+=0.05){
ldu.setVal(1.);
lVu.setVal(cv/cf);
kuu.setVal(cf*cf/gamma(cv,cf,cf));
double dnll2 = 2*spline->getVal();
if (dnll2 < mintkvkf) mintkvkf = dnll2;
gcvcf->SetPoint(pt,cv,cf,dnll2);
gcvcf_lVu->SetPoint(pt,cv,cf,lVu.getVal());
gcvcf_kuu->SetPoint(pt,cv,cf,kuu.getVal());
pt++;
}
}
std::cout << " Min cV-cF = " << mintkvkf << std::endl;
for (int p=0;p<gcvcf->GetN();p++){
double z = (gcvcf->GetZ())[p] - mintkvkf;
double x = (gcvcf->GetX())[p];
double y = (gcvcf->GetY())[p];
gcvcf->SetPoint(p,x,y,z);
}
}
double Vldu, VlVu, Vkuu;
int pt = 0;
double mint2 = 10000;
double mint1 = 10000;
if (doTHDM){
for (double scbma=-1;scbma<1;scbma+=0.01){
for (double b=0.01;b<1.45;b+=0.01){
double tanb = TMath::Tan(b);
if (tanb>1. ) b+=0.05;
double cbma;
if (scbma < 0) cbma = -1*scbma*scbma;
else cbma = scbma*scbma;
// Type 1
type1(cbma, tanb, &Vldu, &VlVu, &Vkuu);
//.........这里部分代码省略.........
示例4: plotContsSingle
void plotContsSingle(TFile *fOUT, std::string dirname, std::string fin, float X, int keepMDM=10){
//gSystem->Load("libHiggsAnalysisCombinedLimit.so");
gROOT->SetBatch(1);
TFile *fiSignals = TFile::Open("signalsVA.root");
RooWorkspace *workspace = (RooWorkspace*)fiSignals->Get("combinedws");
TFile *fiSignalsPS = TFile::Open("signalsPS.root");
RooWorkspace *workspacePS = (RooWorkspace*)fiSignalsPS->Get("combinedws");
//TFile *fi = TFile::Open("limits-output.root");
//TFile *fi = TFile::Open("signal-scans.root");
TFile *fi = TFile::Open(fin.c_str());
TTree *tree = (TTree*)fi->Get("limit");
double mh;
double limit;
float quantile;
tree->SetBranchAddress("mh",&mh);
tree->SetBranchAddress("limit",&limit);
tree->SetBranchAddress("quantileExpected",&quantile);
int nvt = tree->GetEntries();
TGraph2D *grV = new TGraph2D(); grV->SetName("vector");
TGraph2D *grA = new TGraph2D(); grA->SetName("axial");
TGraph2D *grS = new TGraph2D(); grS->SetName("scalar");
TGraph2D *grP = new TGraph2D(); grP->SetName("pseudoscalar");
TGraph2D *grVs = new TGraph2D(); grVs->SetName("vector_signal");
TGraph2D *grAs = new TGraph2D(); grAs->SetName("axial_signal");
TGraph2D *grSs = new TGraph2D(); grSs->SetName("scalar_signal");
TGraph2D *grPs = new TGraph2D(); grPs->SetName("pseudoscalar_signal");
int ptV=0;
int ptA=0;
int ptS=0;
int ptP=0;
TGraph *grV_mMED = new TGraph(); grV_mMED->SetName(Form("vector_mMED_mDM%d",keepMDM));
TGraph *grA_mMED = new TGraph(); grA_mMED->SetName(Form("axial_mMED_mDM%d",keepMDM));
TGraph *grS_mMED = new TGraph(); grS_mMED->SetName(Form("scalar_mMED_mDM%d",keepMDM));
TGraph *grP_mMED = new TGraph(); grP_mMED->SetName(Form("pseudoscalar_mMED_mDM%d",keepMDM));
int ptVm=0;
int ptAm=0;
int ptSm=0;
int ptPm=0;
grV_mMED->SetLineWidth(2); grV_mMED->SetMarkerSize(1.0);
grA_mMED->SetLineWidth(2); grA_mMED->SetMarkerSize(1.0);
grS_mMED->SetLineWidth(2); grS_mMED->SetMarkerSize(1.0);
grP_mMED->SetLineWidth(2); grP_mMED->SetMarkerSize(1.0);
for (int i=0; i<nvt;i++){
//if ( ! ( i%6==X ) ) continue; // 2 or 5
tree->GetEntry(i);
if (quantile!=X) continue;
int cd = code(mh);
float mmed = MMED(mh,cd);
float mdm = MDM(mh,cd);
// onshell crazyness?
if ((int)mmed==2*( (int)mdm) ) continue;
//
//std::cout << " int X = " << i << std::endl;
//std::cout << mh << ", " << cd << ", " << mmed << ", " << mdm << ", " << limit << std::endl;
//std::cout << mh << ", " << Form("monojet_signal_signal_%3d%04d%04d",cd,(int)mmed,(int)mdm) << std::endl;
//exit();
//std::vector<std::pair<double,double>> pointsV_mMED;
//std::vector<std::pair<double,double>> pointsA_mMED;
//std::vector<std::pair<double,double>> pointsS_mMED;
//std::vector<std::pair<double,double>> pointsP_mMED;
RooDataHist *dh;
if (cd==801 || cd==800) dh = (RooDataHist*) workspace->data(Form("monojet_signal_signal_%3d%04d%04d",cd,(int)mmed,(int)mdm));
else if (cd==805 || cd==806) dh = (RooDataHist*) workspacePS->data(Form("monojet_signal_signal_%3d%04d%04d",cd,(int)mmed,(int)mdm));
double nsignal = 0;
if (dh) {
nsignal = dh->sumEntries();
}
if (cd==800) {
grVs->SetPoint(ptV,mmed,mdm,nsignal);
grV->SetPoint(ptV,mmed,mdm,limit);
ptV++;
if ( (int)mdm == keepMDM ) {
grV_mMED->SetPoint(ptVm,mmed,limit);
//pointsV_mMED.push_back(std::mk_pair<double,double>(mmed,limit));
ptVm++;
}
} else if (cd==801){
grAs->SetPoint(ptA,mmed,mdm,nsignal);
grA->SetPoint(ptA,mmed,mdm,limit);
ptA++;
if ( (int)mdm == keepMDM ) {
grA_mMED->SetPoint(ptAm,mmed,limit);
ptAm++;
//.........这里部分代码省略.........
示例5: PlotSVMopt
void PlotSVMopt(){
// // TString FileData = "SVMoptData.dat";
// TFile *f = new TFile("SVMoptTree.root","RECREATE");
// TTree *T = new TTree("SVMoptTree","data from ascii file");
// Long64_t nlines = T->ReadFile("SVMoptData.dat","Gamma:C:ROCint:SigAt1Bkg_test:SigAt1Bkg_train");
// printf(" found %lld pointsn",nlines);
// T->Write();
// TGraph2D *grROCint = new TGraph2D();
// for(int i=0;i<nlines;i++){
// grROCint->SetPoint(i,);
// }
TGraph2D *grROCint = new TGraph2D();
TGraph2D *grSigAt1Bkg_test = new TGraph2D();
TGraph2D *grOverTrain = new TGraph2D();
TString dir = gSystem->UnixPathName(__FILE__);
dir.ReplaceAll("PlotSVMopt.C","");
dir.ReplaceAll("/./","/");
ifstream in;
// in.open(Form("%sSVMoptData.dat",dir.Data()));
in.open(Form("%sSVMoptData_NEW2.dat",dir.Data()));
Float_t Gamma,C,ROCint, SigAt1Bkg_test, SigAt1Bkg_train;
Int_t nlines = 0;
while (1) {
in >> Gamma >> C >> ROCint >> SigAt1Bkg_test >> SigAt1Bkg_train;
if (!in.good()) break;
// if (in.good()){
if (nlines < 5) printf("Gamma=%8f, C=%8f, ROCint=%8f\n",Gamma, C, ROCint);
grROCint->SetPoint(nlines,Gamma,C,ROCint);
grSigAt1Bkg_test->SetPoint(nlines,Gamma,C,SigAt1Bkg_test);
grOverTrain->SetPoint(nlines,Gamma,C,fabs(SigAt1Bkg_train-SigAt1Bkg_test));
nlines++;
// }
}
printf(" found %d points\n",nlines);
in.close();
TCanvas *cSVMopt = new TCanvas("cSVMopt","SVM model choice",600,600);
cSVMopt->Divide(2,2);
cSVMopt->cd(1);
cSVMopt_1->SetLogx();
cSVMopt_1->SetLogy();
grROCint->GetXaxis()->SetLabelSize(0.04);
grROCint->GetYaxis()->SetLabelSize(0.04);
grROCint->GetZaxis()->SetLabelSize(0.04);
grROCint->GetXaxis()->SetTitle("#gamma");
grROCint->GetYaxis()->SetTitle("C");
grROCint->GetZaxis()->SetTitle("ROC integral");
grROCint->SetTitle("ROC integral");
grROCint->SetMaximum(1.0);
grROCint->SetMinimum(0.9);
grROCint->Draw("COLZ");
cSVMopt->cd(2);
cSVMopt_2->SetLogx();
cSVMopt_2->SetLogy();
grSigAt1Bkg_test->SetTitle("Signal at 1% Bkg level (test)");
// grSigAt1Bkg_test->Draw("surf1");
grSigAt1Bkg_test->Draw("COLZ");
cSVMopt->cd(3);
cSVMopt_3->SetLogx();
cSVMopt_3->SetLogy();
grOverTrain->SetTitle("Overtraining");
grOverTrain->Draw("COLZ");
//cSVMopt->SaveAs("SVMoptC1.root");
}
示例6: main
//.........这里部分代码省略.........
std::cout <<"size of int " << intb.size()<< std::endl;
for (size_t it = 0; it < intb.size() - 1; it++){
double y_val = (intb[it]+intb[it+1])/2;
assert (y_val >= 0);
double area = 0.002*y_val;
if(area > 0 )
s_integral += area;
}
std::cout << "Simpson integral: " <<s_integral <<std::endl;
integral_hist->Fill(s_integral);
cmp_int[i] = s_integral;
Int_t lines = (Int_t)intb.size();
TGraph *r_integral = new TGraph(lines, _inta, _intb);
std::cout << "ROOT integral: " << r_integral->Integral() << std::endl;
cmp_int_root[i] = r_integral->Integral();
//expanding
//expand(y, THRS_EXPAND, RATIO_EXPAND, LINES);
//Filling TGraph2D
for(Int_t j = 0; j <LINES ; j++){
if (y[j] > max){
max = y[j];
maxwl = x[j];
}
gr->SetPoint(j+i*LINES, x[j],i,y[j]);
}
in.seekg(0, std::ios::beg);
in.close();
//Plotting each spectrum
TGraph *_gr = new TGraph(LINES,x,y);
_gr->GetHistogram()->GetXaxis()->SetTitle("#lambda in nm");
_gr->GetHistogram()->GetYaxis()->SetTitle("Intensity in dB");
c1->cd(i-NUM_ARGS);
_gr->Draw("AP");
_gr->GetYaxis()->SetRangeUser(-80.,-10.);
_gr->GetXaxis()->SetRangeUser(startwl,stopwl);
_gr->SetTitle(tmp.c_str());
c1->Update();
//Calculating asymmetry
std::cout << "maximum: " << max << std::endl;
double leftlimit, rightlimit = 1;
leftlimit = findlower(x,y, max);
rightlimit = findupper(x,y, max);
if (leftlimit != 1 && rightlimit != 1){
width_ary[i] = (leftlimit +rightlimit)/2;
}else{
width_ary[i] = maxwl;
}
double calced_asy = (maxwl-leftlimit)/(rightlimit-maxwl);
asymmety_ary[i-NUM_ARGS] = calced_asy;
示例7: FitXS
//.........这里部分代码省略.........
//c1_5->SetTicks(0,0);
//c1_2->SetRightMargin(0.15);
//c1_2->SetLeftMargin(0.15);
//c1_2->SetBottomMargin(0.02);
lm10->Draw("colz1");
//text->DrawLatex(-3,1,"SM plane in log scale");
//text->SetTextSize(0.08);
//text->SetTextColor(0);
text->DrawLatex(-3.,0.7,"#kappa_{#lambda} = -10, c_{g} = c_{2} = 0");
c1->SaveAs("C2Fit.pdf");
c1->Close();
*/
//////////////////////////////////////////////////
//
// do histrograms with errors
//
// plot (point - fit)/fit between int nmintest, int nmaxtest
// do by the planes
//////////////////////////////////////////////////
// take the fit
// need to be done by planes
//c1->Clear();
// a
double SMxs = 0.013531; // 1 0.017278;// 14 0.0041758;// 8tev 0.013531; // 13 tev 0.017278;// 0.0041758;
TGraph2D *g2 = new TGraph2D(117);//(118);
g2->SetMarkerStyle(20);
g2->SetMarkerSize(2);
g2->SetTitle("0");
g2->SetTitle("#kappa_{t} = #kappa_{#lambda} = 1 , c_{2} = 0 ; c_{g} ; c_{2g}");
int j=0;
for (unsigned int ij = 0; ij < nmaxx ; ij++) if( par1[ij] ==1 && par0[ij] ==1 && par2[ij]==0 && cross_section[ij] >0.0001) if(ij!=301) {
double fit = SMxs*(fg2->Eval(par3[ij], par4[ij]));
cout<<j<<" "<< par3[ij]<<" "<< par4[ij]<<" "<<fit <<" "<< cross_section[ij]<<" diff: " <<(fit - cross_section[ij])/fit<< endl;
g2->SetPoint(j, par3[ij], par4[ij], 100*(fit - cross_section[ij])/fit);
j++;
//Differences2->Fill(par3[i], par4[i], (fit - cross_section[i])/fit);
}
// b
////////////////////////////////
int ktb=1.0;
int klb=1.0;
// cg ===> x ==> c2
// c2g ===> y ==> kt ==> cg = c2g
TF2 *pb = new TF2("pb","([0]*[15]**4 + [1]*x**2 + [2]*[15]**2*[16]**2 + [3]*y**2*[16]**2 + [4]*y**2 + [5]*x*[15]**2 + [6]*[15]*[16]*[15]**2 + [7]*[15]*[16]*x + [8]*y*[16]*x - [9]*x*y + [10]*y*[16]*[15]**2 - [11]*y*[15]**2 + [12]*[16]*y*[15]*[16] - [13]*y*[15]*[16] - [14]*y*y*[16])/[17]",-3,3,-1,1);
pb->SetParameter(0,a[0]);
pb->SetParameter(1,a[1]);
pb->SetParameter(2,a[2]);
pb->SetParameter(3,a[3]);
pb->SetParameter(4,a[4]);
pb->SetParameter(5,a[5]);
pb->SetParameter(6,a[6]);
pb->SetParameter(7,a[7]);
pb->SetParameter(8,a[8]);
pb->SetParameter(9,a[9]);
pb->SetParameter(10,a[10]);
pb->SetParameter(11,a[11]);
pb->SetParameter(12,a[12]);
pb->SetParameter(13,a[13]);
pb->SetParameter(14,a[14]);
pb->SetTitle("#kappa_{t} = #kappa_{#lambda} = 1 , c_{2g} = - c_{g} ; c_{2} ; c_{g}");
pb->SetParameter(15,ktb); //==> c2g ==>kt
pb->SetParameter(16,klb);
pb->SetContour(200);
//l5->SetParameter(17,cg); //==> cg
pb->SetParameter(17,norm);//0.013531
//pb->SetMinimum(0);
示例8: sdist
Int_t line3dfit_copy()
{
gStyle->SetOptStat(0);
gStyle->SetOptFit();
//double e = 0.1;
// Int_t nd = 5;
// double xmin = 0; double ymin = 0;
// double xmax = 10; double ymax = 10;
TGraph2D * gr = new TGraph2D();
// Fill the 2D graph
// double p0[4] = {10,20,1,2};
// generate graph with the 3d points
// for (Int_t N=0; N<nd; N++) {
// double x,y,z = 0;
// // Generate a random number
// double t = gRandom->Uniform(0,10);
// line(t,p0,x,y,z);
// double err = 1;
// // do a gaussian smearing around the points in all coordinates
// x += gRandom->Gaus(0,err);
// y += gRandom->Gaus(0,err);
// z += gRandom->Gaus(0,err);
// gr->SetPoint(N,x,y,z);
// //dt->SetPointError(N,0,0,err);
// }
// gr->SetPoint(0, 3, 3, 5);
// gr->SetPoint(1, 3, 3, 3);
// gr->SetPoint(2, 4, 3.5, 5);
// gr->SetPoint(3, 6.2, 7.3, 5.8);
// gr->SetPoint(4, 9, 8, 7);
// gr->SetPoint(5, 5, 5, 5);
gr->SetPoint(0, 19, -4.25, 1.92);
gr->SetPoint(1, 19, -4.30, 1.92);
gr->SetPoint(2, 19, -4.35, 1.92);
gr->SetPoint(3, 19, -4.40, 1.92);
gr->SetPoint(4, 19, -4.45, 1.92);
gr->SetPoint(5, 19, -4.50, 1.92);
gr->SetPoint(6, 19, -4.55, 1.92);
gr->SetPoint(7, 19, -4.60, 1.92);
gr->SetPoint(8, 18.75, -4.30, 1.92);
gr->SetPoint(9, 18.75, -4.35, 1.92);
gr->SetPoint(10, 18.75, -4.40, 1.92);
gr->SetPoint(11, 18.75, -4.45, 1.92);
gr->SetPoint(12, 18.75, -4.50, 1.92);
gr->SetPoint(13, 18.75, -4.55, 1.92);
gr->SetPoint(14, 19, -4.20, 2.08);
gr->SetPoint(15, 19, -4.65, 2.08);
gr->SetPoint(16, 19, -4.70, 2.08);
gr->SetPoint(17, 18.75, -4.25, 2.08);
gr->SetPoint(18, 18.75, -4.60, 2.08);
// gr->SetPoint(19, 19.001, -4.151, 2.241);
// gr->SetPoint(20, 18.751, -4.201, 2.241);
gr->SetPoint(19, 19., -4.15, 2.24);
gr->SetPoint(20, 18.5723, -4.20, 2.24);
// gr->SetMarkerStyle(8);
// gr->Draw("p");
// gr->Draw("p0");
// TFitResultPtr fit = gr->Fit("pol1", "WS");
// // fit->Print("V");
// Double_t p0 = fit->Value(0);
// Double_t p1 = fit->Value(1);
// // draw the line
// TPolyLine3D *l = new TPolyLine3D(2);
// double dz = 8;
// l->SetPoint(0,0,0,p0);
// l->SetPoint(1,dz,0,dz * p1);
// l->SetLineColor(kRed);
// l->Draw("same");
// fit the graph now, and make the functor objet
ROOT::Fit::Fitter fitter;
SumDistance2 sdist(gr);
#ifdef __CINT__
ROOT::Math::Functor fcn(&sdist,4,"SumDistance2");
#else
ROOT::Math::Functor fcn(sdist,4);
#endif
// set the function and the initial parameter values
double pStart[4] = {1,1,1,1};
fitter.SetFCN(fcn,pStart);
// set step sizes different than default ones (0.3 times parameter values)
for (int i = 0; i < 4; ++i) fitter.Config().ParSettings(i).SetStepSize(0.01);
bool ok = fitter.FitFCN();
//.........这里部分代码省略.........
示例9: rs101_limitexample
//.........这里部分代码省略.........
fcint = fc.GetInterval(); // that was easy.
RooFitResult* fit = modelWithConstraints->fitTo(*data, Save(true));
// Third, use a Calculator based on Markov Chain monte carlo
// Before configuring the calculator, let's make a ProposalFunction
// that will achieve a high acceptance rate
ProposalHelper ph;
ph.SetVariables((RooArgSet&)fit->floatParsFinal());
ph.SetCovMatrix(fit->covarianceMatrix());
ph.SetUpdateProposalParameters(true);
ph.SetCacheSize(100);
ProposalFunction* pdfProp = ph.GetProposalFunction(); // that was easy
MCMCCalculator mc(*data, modelConfig);
mc.SetNumIters(20000); // steps to propose in the chain
mc.SetTestSize(.05); // 95% CL
mc.SetNumBurnInSteps(40); // ignore first N steps in chain as "burn in"
mc.SetProposalFunction(*pdfProp);
mc.SetLeftSideTailFraction(0.5); // find a "central" interval
MCMCInterval* mcInt = (MCMCInterval*)mc.GetInterval(); // that was easy
// Get Lower and Upper limits from Profile Calculator
cout << "Profile lower limit on s = " << ((LikelihoodInterval*) lrinterval)->LowerLimit(*s) << endl;
cout << "Profile upper limit on s = " << ((LikelihoodInterval*) lrinterval)->UpperLimit(*s) << endl;
// Get Lower and Upper limits from FeldmanCousins with profile construction
if (fcint != NULL) {
double fcul = ((PointSetInterval*) fcint)->UpperLimit(*s);
double fcll = ((PointSetInterval*) fcint)->LowerLimit(*s);
cout << "FC lower limit on s = " << fcll << endl;
cout << "FC upper limit on s = " << fcul << endl;
TLine* fcllLine = new TLine(fcll, 0, fcll, 1);
TLine* fculLine = new TLine(fcul, 0, fcul, 1);
fcllLine->SetLineColor(kRed);
fculLine->SetLineColor(kRed);
fcllLine->Draw("same");
fculLine->Draw("same");
dataCanvas->Update();
}
// Plot MCMC interval and print some statistics
MCMCIntervalPlot mcPlot(*mcInt);
mcPlot.SetLineColor(kMagenta);
mcPlot.SetLineWidth(2);
mcPlot.Draw("same");
double mcul = mcInt->UpperLimit(*s);
double mcll = mcInt->LowerLimit(*s);
cout << "MCMC lower limit on s = " << mcll << endl;
cout << "MCMC upper limit on s = " << mcul << endl;
cout << "MCMC Actual confidence level: "
<< mcInt->GetActualConfidenceLevel() << endl;
// 3-d plot of the parameter points
dataCanvas->cd(2);
// also plot the points in the markov chain
RooDataSet * chainData = mcInt->GetChainAsDataSet();
assert(chainData);
std::cout << "plotting the chain data - nentries = " << chainData->numEntries() << std::endl;
TTree* chain = RooStats::GetAsTTree("chainTreeData","chainTreeData",*chainData);
assert(chain);
chain->SetMarkerStyle(6);
chain->SetMarkerColor(kRed);
chain->Draw("s:ratioSigEff:ratioBkgEff","nll_MarkovChain_local_","box"); // 3-d box proportional to posterior
// the points used in the profile construction
RooDataSet * parScanData = (RooDataSet*) fc.GetPointsToScan();
assert(parScanData);
std::cout << "plotting the scanned points used in the frequentist construction - npoints = " << parScanData->numEntries() << std::endl;
// getting the tree and drawing it -crashes (very strange....);
// TTree* parameterScan = RooStats::GetAsTTree("parScanTreeData","parScanTreeData",*parScanData);
// assert(parameterScan);
// parameterScan->Draw("s:ratioSigEff:ratioBkgEff","","goff");
TGraph2D *gr = new TGraph2D(parScanData->numEntries());
for (int ievt = 0; ievt < parScanData->numEntries(); ++ievt) {
const RooArgSet * evt = parScanData->get(ievt);
double x = evt->getRealValue("ratioBkgEff");
double y = evt->getRealValue("ratioSigEff");
double z = evt->getRealValue("s");
gr->SetPoint(ievt, x,y,z);
// std::cout << ievt << " " << x << " " << y << " " << z << std::endl;
}
gr->SetMarkerStyle(24);
gr->Draw("P SAME");
delete wspace;
delete lrinterval;
delete mcInt;
delete fcint;
delete data;
// print timing info
t.Stop();
t.Print();
}