本文整理汇总了C++中TBranch::Fill方法的典型用法代码示例。如果您正苦于以下问题:C++ TBranch::Fill方法的具体用法?C++ TBranch::Fill怎么用?C++ TBranch::Fill使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TBranch
的用法示例。
在下文中一共展示了TBranch::Fill方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: updateweight
void updateweight(TString filename)
{
auto f = new TFile(filename,"update");
auto nt = (TTree *)f->Get("nt");
float prew, weight;
TBranch *bw;
bw = nt->Branch("weight",&weight);
nt->SetBranchAddress("prew",&prew);
int n = nt->GetEntries();
int onep = n/100;
for (int i=0;i<n;i++) {
if (i%onep==0) cout<<i/onep<<endl;
nt->GetEntry(i);
weight = prew;
bw->Fill();
}
nt->Write();
f->Close();
}
示例2: AddBranch
void ResultFormatter::AddBranch( TTree* inputTree, const string& BranchName, const vector<double>& DoubleData )
{
if( inputTree->GetEntries() != 0 )
{
if( inputTree->GetEntries() != (int) DoubleData.size() )
{
cerr << "CANNOT ADD DOUBLE BRANCH: " << BranchName << " TO: " << inputTree->GetName() << endl;
return;
}
}
TString branchName( BranchName );
TString branchLabel=branchName; branchLabel.Append("/D");
double thisValue=0.;
TBranch* newBranch = inputTree->Branch( branchName, &thisValue, branchLabel );
inputTree->SetEntries( (int) DoubleData.size() );
for( unsigned int i=0; i< DoubleData.size(); ++i )
{
thisValue=DoubleData[i];
newBranch->Fill();
}
return;
}
示例3: GetEntry
int reader_wrapper::GetEntry(Long64_t e) {
/// don't care about spectators here
for (auto b: m_branches) {
b->GetEntry(e);
}
for (auto& v : m_variables) {
v.value = v.ttreeformula->EvalInstance();
}
m_response = m_reader->EvaluateMVA(m_methodName.Data());
m_responseBranch->Fill();
return 0;
}
示例4: addBranchToTreesInFiles
void addBranchToTreesInFiles() {
//************************************************************
// Variables //
vector<TString> fileName;
fileName.push_back( "PhotonJetPt15_realPhotons.root" );
fileName.push_back( "PhotonJetPt30_realPhotons.root" );
// The following 4 variables set the scale
float invLuminosityToScaleTo = 200; // in pb-1
vector<float> crossSection;
crossSection.push_back( 2.9E5 );
crossSection.push_back( 3.2E4 );
vector<float> filterEffeciency;
filterEffeciency.push_back( 1.0 );
filterEffeciency.push_back( 1.0 );
vector<float> eventsAnalyzied;
eventsAnalyzied.push_back( 950E3 );
eventsAnalyzied.push_back( 670E3 );
// END of setting scale
TString treeName = "TreePhotonMatched";
// END of Variables //
//************************************************************
// Loop over all the Files
for (int i=0; i < fileName.size(); i++) {
TFile* currentFile = new TFile(fileName[i],"update");
// this is the variable to be added
Float_t scale=crossSection[i]*invLuminosityToScaleTo*filterEffeciency[i]/eventsAnalyzied[i];
cout << "Opened " << fileName[i] << ", adding new branch with value=" << scale;
TTree *tree = (TTree*)currentFile->Get(treeName);
TBranch *newBranch = tree->Branch("weight", &scale,"weight/F");
// Loop over all the entries, and add the new branch
Int_t numEntries = (Int_t)tree->GetEntries();
for (Int_t j=0; j<numEntries; j++) {
newBranch->Fill();
}
tree->Write("",TObject::kOverwrite); // save new version only
currentFile->Close();
cout << "...closed file." << endl;
}
}
示例5: addDiMuMassPrimeBranchZPt
void addDiMuMassPrimeBranchZPt(DiMuPlottingSystem* dps)
{
TTree* newtree = new TTree("newtree", "new tree");
newtree->AddFriend(dps->treename, dps->infilename);
TBranch *newBranch = newtree->Branch("recoCandMassPrime",&dps->recoCandMassPrime,"recoCandMassPrime/F");
Int_t nentries = dps->tree->GetEntries();
std::cout << "nentries: " << nentries << std::endl;
for (Int_t i = 0; i < nentries; i++)
{
dps->tree->GetEntry(i);
if(dps->recoCandPt > 20 && dps->recoCandPt < 60) dps->recoCandMassPrime = dps->recoCandMass + 0.0000917686*(dps->recoCandPt*dps->recoCandPt)*TMath::Sin(-6.43015*TMath::Sqrt(dps->recoCandPt) + 0.210496);
else dps->recoCandMassPrime = dps->recoCandMass;
newBranch->Fill();
}
dps->tree = newtree;
}
示例6: addMCWeight
void addMCWeight(TString filename, TString treename)
{
using namespace std;
cout << "adding MCWeight to:"<< filename << endl;
double scale_w;
float mcWeight;
int npv;
TFile *file = new TFile(filename,"UPDATE");
TTree *oldtree = (TTree*)file->Get(treename);
if(oldtree==NULL)
{
cout << "Could not find tree " << treeDir << "/" << treename << endl
<< "in file " << file->GetName() << endl;
return;
}
oldtree->SetBranchAddress("scale_w",&scale_w);
oldtree->SetBranchAddress("mcWeight",&mcWeight);
oldtree->SetBranchAddress("npv",&npv);
double scaleMC_w = 1.0;
TBranch *branch = oldtree->Branch("scaleMC_w",&scaleMC_w,"scaleMC_w/D");
for(int i = 0; i < oldtree->GetEntries(); i++)
{
oldtree->GetEntry(i);
double w_npv = (3.57041 + -1.49846*npv + 0.515829*npv*npv + -0.0839209*npv*npv*npv + 0.00719964*npv*npv*npv*npv + -0.000354548*npv*npv*npv*npv*npv + 1.01544e-05*npv*npv*npv*npv*npv*npv + -1.58019e-07*npv*npv*npv*npv*npv*npv*npv + 1.03663e-09*npv*npv*npv*npv*npv*npv*npv*npv);
scaleMC_w = scale_w*mcWeight*w_npv;
branch->Fill();
}
file->cd();
oldtree->CloneTree()->Write(treename, TObject::kOverwrite);
file->Close();
}
示例7: addMCWeight_data
void addMCWeight_data(TString filename, TString treename)
{
using namespace std;
cout << "Data adding MCWeight to:"<< filename << endl;
double scale_w;
float mcWeight;
TFile *file = new TFile(filename,"UPDATE");
TTree *oldtree = (TTree*)file->Get(treename);
if(oldtree==NULL)
{
cout << "Could not find tree " << treeDir << "/" << treename << endl
<< "in file " << file->GetName() << endl;
return;
}
oldtree->SetBranchAddress("scale_w",&scale_w);
oldtree->SetBranchAddress("mcWeight",&mcWeight);
double scaleMC_w = 1.0;
TBranch *branch = oldtree->Branch("scaleMC_w",&scaleMC_w,"scaleMC_w/D");
for(int i = 0; i < oldtree->GetEntries(); i++)
{
oldtree->GetEntry(i);
scaleMC_w = scale_w*mcWeight;
branch->Fill();
}
file->cd();
oldtree->CloneTree()->Write(treename, TObject::kOverwrite);
file->Close();
}
示例8: addBranch
void addBranch() {
//TFile *f = TFile::Open("TTbar_madgraphMLM_1000pb_weighted.root","update");
//TFile *f = TFile::Open("QCD_1000pb_weighted.root","update");
TFile *f = TFile::Open("GluGluHToBB_M125_13TeV_powheg_pythia8_1000pb_weighted.root","update");
TTree *T = (TTree*)f->Get("otree");
double AK8Puppijet0_tau21,AK8Puppijet0_msd,AK8Puppijet0_pt;
double AK8Puppijet0_tau21DDT = 999;
TBranch *bpt = T->Branch("AK8Puppijet0_tau21DDT",&AK8Puppijet0_tau21DDT,"AK8Puppijet0_tau21DDT/D");
T->SetBranchAddress("AK8Puppijet0_tau21",&AK8Puppijet0_tau21);
T->SetBranchAddress("AK8Puppijet0_msd",&AK8Puppijet0_msd);
T->SetBranchAddress("AK8Puppijet0_pt",&AK8Puppijet0_pt);
Long64_t nentries = T->GetEntries();
for (Long64_t i=0;i<nentries;i++) {
T->GetEntry(i);
if (AK8Puppijet0_pt > 0. && AK8Puppijet0_msd > 0.)
AK8Puppijet0_tau21DDT = AK8Puppijet0_tau21 + 0.063*TMath::Log(AK8Puppijet0_msd*AK8Puppijet0_msd/AK8Puppijet0_pt);
bpt->Fill();
}
T->Print();
T->Write();
delete f;
}
示例9: updatePbPbBtriggerweight
void updatePbPbBtriggerweight(TString filename, vector<float> w)
{
auto f = new TFile(filename,"update");
auto nt = (TTree *)f->Get("nt");
float csv60, csv80;
float triggermatched;
float weight;
TBranch *bw;
bw = nt->Branch("weight",&weight);
nt->SetBranchAddress("hltCSV60",&csv60);
nt->SetBranchAddress("hltCSV80",&csv80);
nt->SetBranchAddress("triggermatched",&triggermatched);
int n = nt->GetEntries();
int onep = n/100;
for (int i=0;i<n;i++) {
if (i%onep==0) cout<<i/onep<<endl;
nt->GetEntry(i);
weight = 0;
if (triggermatched && csv80) weight = w[1];
if (triggermatched && csv60 && !csv80) weight = w[0];
bw->Fill();
}
nt->Write();
f->Close();
}
示例10: TMVAClassificationApplication_TX
//.........这里部分代码省略.........
var8 = intVar8;
var9 = intVar9;
var10 = dVar10;
var11 = dVar11;
var12 = dVar12;
var13 = dVar13;
var14 = dVar14;
var15 = dVar15;
if(vecVar16->size()>0){
var16 = vecVar16->at(0);
}
else{
var16 = 0;
}
if(vecVar17->size()>0){
var17 = vecVar17->at(0);
}
else{
var18 = 0;
}
if(vecVar19->size()>0){
var19 = vecVar19->at(0);
}
else{
var19 = 0;
}
if(vecVar20->size()>0){
var20 = vecVar20->at(0);
}
else{
var20 = 0;
}
if(vecVar16->size()>1){
var21 = vecVar16->at(1);
}
else{
var21 = 0;
}
var22 = dVar22;
var23 = dVar23;
var24 = dVar24;
var25 = dVar25;
var26 = dVar26;
var27 = dVar27;
var28 = dVar28;
var29 = dVar29; // --- Return the MVA outputs and fill into histograms
if (Use["CutsGA"]) {
// Cuts is a special case: give the desired signal efficienciy
Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS );
if (passed) nSelCutsGA++;
}
BDT = reader->EvaluateMVA( "BDT method");
histBdt->Fill(BDT);
branchBDT->Fill();
}
// Get elapsed time
sw.Stop();
std::cout << "--- End of event loop: "; sw.Print();
// Get efficiency for cuts classifier
if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries()
<< " (for a required signal efficiency of " << effS << ")" << std::endl;
if (Use["CutsGA"]) {
// test: retrieve cuts for particular signal efficiency
// CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer
TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ;
if (mcuts) {
std::vector<Double_t> cutsMin;
std::vector<Double_t> cutsMax;
mcuts->GetCuts( 0.7, cutsMin, cutsMax );
std::cout << "--- -------------------------------------------------------------" << std::endl;
std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl;
for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
std::cout << "... Cut: "
<< cutsMin[ivar]
<< " < \""
<< mcuts->GetInputVar(ivar)
<< "\" <= "
<< cutsMax[ivar] << std::endl;
}
std::cout << "--- -------------------------------------------------------------" << std::endl;
}
}
// --- Write histograms
newTree->Write("",TObject::kOverwrite);
target->Close();
std::cout << "--- Created root file: \""<<oFileName<<"\" containing the MVA output histograms" << std::endl;
delete reader;
std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl;
}
示例11: main
//.........这里部分代码省略.........
int numberOfSamples = ReadFileWeight(nameFileIn, nameSample, PUScenarioIndex);
std::cout << std::endl;
std::cout << " numberOfSamples = " << numberOfSamples << std::endl;
std::cout << std::endl;
// std::cout << " PUScenarioIndex[0] = " << PUScenarioIndex[0] << std::endl;
///==== PU reweight (begin) ====
int numPUScenarios = gConfigParser -> readIntOption("PU::PUScenarios");
std::vector<std::string> PUVAR;
std::vector<double> PUMC[100];
std::vector<double> PUDATA[100];
PUclass PU[100];
for (int iScPU = 0; iScPU < numPUScenarios; iScPU++) {
TString namePU;
namePU = Form("PU::PUMC%d",iScPU);
PUMC[iScPU] = gConfigParser -> readDoubleListOption(namePU.Data());
namePU = Form("PU::PUDATA%d",iScPU);
PUDATA[iScPU] = gConfigParser -> readDoubleListOption(namePU.Data());
namePU = Form("PU::PUVAR%d",iScPU);
std::string tempName = gConfigParser -> readStringOption(namePU.Data());
PUVAR.push_back(tempName);
if (PUMC[iScPU].size() != PUDATA[iScPU].size()) {
std::cout << " PUVAR[" << iScPU << "] = " << PUVAR.at(iScPU) << std::endl;
std::cout << " PUMC[" << iScPU << "].size() = " << PUMC[iScPU].size() << std::endl;
std::cout << " PUDATA[" << iScPU << "].size() = " << PUDATA[iScPU].size() << std::endl;
std::cerr << " ERROR " << std::endl;
return 1;
}
double sumPUMC = 0;
for (int itVPU = 0; itVPU < PUMC[iScPU].size(); itVPU++ ){
sumPUMC += PUMC[iScPU].at(itVPU);
}
double sumPUDATA = 0;
for (int itVPU = 0; itVPU < PUDATA[iScPU].size(); itVPU++ ){
sumPUDATA += PUDATA[iScPU].at(itVPU);
}
for (int itVPU = 0; itVPU < PUMC[iScPU].size(); itVPU++ ){
PU[iScPU].PUWeight.push_back(PUDATA[iScPU].at(itVPU) / PUMC[iScPU].at(itVPU) * sumPUMC / sumPUDATA);
}
}
///==== PU reweight (end) ====
///==== debug flag ====
bool debug = false;
try {
debug = gConfigParser -> readBoolOption("Input::debug");
}
catch (char const* exceptionString){
std::cerr << " exception = " << exceptionString << std::endl;
}
std::cout << ">>>>> input::debug " << debug << std::endl;
for (int iSample=0; iSample<numberOfSamples; iSample++){
std::cout << " nameSample[" << iSample << ":" << numberOfSamples << "] = " << nameSample[iSample] << std::endl;
///==== GetTree (begin) ====
char nameFile[20000];
sprintf(nameFile,"%s/out_%s.root",inputDirectory.c_str(),nameSample[iSample]);
std::cout << " nameFile = " << nameFile << std::endl;
TFile* f = new TFile(nameFile, "update");
f->cd(treeNameDir.c_str());
treeJetLepVect[iSample] = (TTree*) f->Get(treeName.c_str());
// char nameTreeJetLep[100];
// sprintf(nameTreeJetLep,"treeJetLep_%d",iSample);
// treeJetLepVect[iSample]->SetName(nameTreeJetLep);
///==== GetTree (end) ====
std::cout << " >>>>> GetEntries " << treeJetLepVect[iSample]->GetEntries() << std::endl;
double weight;
// TBranch *newBranch;
///==== add new branch ====
TBranch *newBranch = treeJetLepVect[iSample] -> Branch("weight_PU",&weight,"weight_PU/D");
int numPUMC;
treeJetLepVect[iSample] -> SetBranchAddress(PUVAR.at(PUScenarioIndex[iSample]).c_str(),&numPUMC);
Long64_t nentries = treeJetLepVect[iSample]->GetEntries();
for (Long64_t iEntry = 0; iEntry < nentries; iEntry++){
if((iEntry%((nentries+10)/10)) == 0) std::cout << ">>>>> analysis::GetEntry " << iEntry << " : " << nentries << std::endl;
treeJetLepVect[iSample]->GetEntry(iEntry);
weight = PU[ PUScenarioIndex[iSample] ].getPUWeight(numPUMC);
newBranch->Fill();
}
// save only the new version of the tree
treeJetLepVect[iSample]->Write("", TObject::kOverwrite);
}
std::cout << " *** end *** " << std::endl;
}
示例12: flagMultCands
void flagMultCands( TString fname, TString tname ) {
TFile *inFile = new TFile( fname, "UPDATE" );
TTree *tree = (TTree*)inFile->Get( tname );
if ( tree->FindBranch( "pass_multcand" ) ) {
cout << "pass_multcand branch already exists so I won't add it" << endl;
delete inFile;
return;
}
ULong64_t eventNumber;
int itype;
bool pass_bdt;
bool pass_pid;
bool pass_rhokst;
bool pass_massveto;
UInt_t nCandidate;
ULong64_t totCandidates;
tree->SetBranchAddress( "eventNumber" , &eventNumber );
tree->SetBranchAddress( "itype" , &itype );
tree->SetBranchAddress( "pass_bdt" , &pass_bdt );
tree->SetBranchAddress( "pass_pid" , &pass_pid );
tree->SetBranchAddress( "pass_rhokst" , &pass_rhokst );
tree->SetBranchAddress( "pass_massveto" , &pass_massveto );
tree->SetBranchAddress( "totCandidates" , &totCandidates );
tree->SetBranchAddress( "nCandidate" , &nCandidate );
map< ULong64_t, ULong64_t > multCandEventNumbers;
cout << "Finding multiple candidates" << endl;
// first loop tree and save number of all multiple candidates
for ( int ev=0; ev<tree->GetEntries(); ev++ ) {
tree->GetEntry(ev);
if ( ev%10000==0 ) cout << ev << "/" << tree->GetEntries() << endl;
//if ( itype>0 && pass_bdt && pass_pid && (!pass_rhokst) && (!pass_massveto) && totCandidates > 1 ) {
if ( itype>0 && pass_bdt && pass_pid && (!pass_massveto) && totCandidates > 1 ) {
multCandEventNumbers[eventNumber] = totCandidates;
}
}
// now randomly select which one to keep
map< ULong64_t, UInt_t > eventToKeep;
TRandom3 rand;
rand.SetSeed(2016);
for ( map<ULong64_t,ULong64_t>::iterator it=multCandEventNumbers.begin(); it!=multCandEventNumbers.end(); it++) {
UInt_t keep = rand.Integer( it->second );
eventToKeep[it->first] = keep;
}
cout << "Adding flag pass_multcand to tree" << endl;
// then loop again and write the random choice back in
bool pass_multcand;
TBranch *bpt = tree->Branch( "pass_multcand", &pass_multcand, "pass_multcand/O" );
for ( int ev=0; ev<tree->GetEntries(); ev++ ) {
tree->GetEntry(ev);
if ( ev%10000==0 ) cout << ev << "/" << tree->GetEntries() << endl;
pass_multcand = true;
if ( totCandidates > 1 && eventToKeep[eventNumber] != nCandidate ) pass_multcand = false;
bpt->Fill();
}
tree->Write();
delete inFile;
}
示例13: TMVAClassificationApplication_new
//.........这里部分代码省略.........
Float_t BDT;
TBranch *branchBDT = newTree->Branch("BDT_"+bkgSample,&BDT,"BDT/F");
std::vector<Double_t> *vecVar1;
std::vector<Double_t> *vecVar5;
std::vector<Double_t> *vecVar7;
theTree->SetBranchAddress( "svMass", &vecVar1);
theTree->SetBranchAddress( "dRTauTau", &var3);
theTree->SetBranchAddress( "dRJJ", &var4 );
// theTree->SetBranchAddress( "svPt", &vecVar5 );
// theTree->SetBranchAddress( "dRhh", &var6 );
theTree->SetBranchAddress( "met", &vecVar7 );
theTree->SetBranchAddress( "mJJ", &var8 );
// theTree->SetBranchAddress( "metTau1DPhi", &var9 );
// theTree->SetBranchAddress( "metTau2DPhi", &var10);
// theTree->SetBranchAddress( "metJ1DPhi", &var11);
// theTree->SetBranchAddress( "metJ2DPhi", &var12 );
// theTree->SetBranchAddress( "metTauPairDPhi", &var13 );
// theTree->SetBranchAddress( "metSvTauPairDPhi", &var14 );
// theTree->SetBranchAddress( "metJetPairDPhi", &var15 );
// theTree->SetBranchAddress( "CSVJ1", &var16 );
// theTree->SetBranchAddress( "CSVJ2", &var17 );
theTree->SetBranchAddress( "fMassKinFit", &var2);
theTree->SetBranchAddress( "chi2KinFit2", &var18);
//to get initial pre-processed events
TH1F* cutFlow = (TH1F*)input->Get("preselection");
// Efficiency calculator for cut method
Int_t nSelCutsGA = 0;
Double_t effS = 0.7;
std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests
std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl;
TStopwatch sw;
sw.Start();
for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {
if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl;
theTree->GetEntry(ievt);
var1 = vecVar1->at(0);
// var5 = vecVar5->at(0);
var7 = vecVar7->at(0);
// --- Return the MVA outputs and fill into histograms
if (Use["CutsGA"]) {
// Cuts is a special case: give the desired signal efficienciy
Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS );
if (passed) nSelCutsGA++;
}
BDT = reader->EvaluateMVA( "BDT method");
histBdt->Fill(BDT);
branchBDT->Fill();
}
// Get elapsed time
sw.Stop();
std::cout << "--- End of event loop: "; sw.Print();
// Get efficiency for cuts classifier
if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries()
<< " (for a required signal efficiency of " << effS << ")" << std::endl;
if (Use["CutsGA"]) {
// test: retrieve cuts for particular signal efficiency
// CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer
TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ;
if (mcuts) {
std::vector<Double_t> cutsMin;
std::vector<Double_t> cutsMax;
mcuts->GetCuts( 0.7, cutsMin, cutsMax );
std::cout << "--- -------------------------------------------------------------" << std::endl;
std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl;
for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
std::cout << "... Cut: "
<< cutsMin[ivar]
<< " < \""
<< mcuts->GetInputVar(ivar)
<< "\" <= "
<< cutsMax[ivar] << std::endl;
}
std::cout << "--- -------------------------------------------------------------" << std::endl;
}
}
// --- Write histograms
histBdt->Write();
cutFlow->Write();
newTree->Write();
target->Close();
std::cout << "--- Created root file: \""<<oFileName<<"\" containing the MVA output histograms" << std::endl;
delete reader;
std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl;
}
示例14: CollectRuns
//.........这里部分代码省略.........
ss >> dummy;
valHeight.push_back(dummy);
}
//Initialise the output tree.
TChain* OutChain = new TChain("ChainResults", "The collected run results");
for(size_t i=0; i<theEnergy.size(); i++){
for(size_t j=0; j<theHeight.size(); j++){
string fname = "Edep_" + theEnergy.at(i) + "MeV_" + theHeight.at(j)
+ "cm.root";
cout << "Processing File: " << fname << "... ";
TFile* infile = TFile::Open(fname.c_str(), "update");
TTree* inTree = (TTree*)infile->Get("Results");
//Clean up any old branches...
//TBranch* OldBranch;
//if(inTree->GetListOfBranches()->FindObject("BeamEn")){
//OldBranch = inTree->GetBranch("BeamEn");
//inTree->GetListOfBranches()->Remove(OldBranch);
//inTree->Write();
//}
//if(inTree->GetListOfBranches()->FindObject("BeamHgt")){
//OldBranch = inTree->GetBranch("BeamHgt");
//inTree->GetListOfBranches()->Remove(OldBranch);
//inTree->Write();
//}
//if(inTree->GetListOfBranches()->FindObject("MeanPE_T1")){
//OldBranch = inTree->GetBranch("MeanPE_T1");
//inTree->GetListOfBranches()->Remove(OldBranch);
//inTree->Write();
//}
//if(inTree->GetListOfBranches()->FindObject("MeanPE_T2")){
//OldBranch = inTree->GetBranch("MeanPE_T2");
//inTree->GetListOfBranches()->Remove(OldBranch);
//inTree->Write();
//}
float BeamEn = 0;
float BeamHgt = 0;
float MeanT1 = 0;
float MeanT2 = 0;
//Add an energy and beam height branch to the tree.
TBranch* EnBranch = inTree->Branch("BeamEn", &BeamEn, "BeamEn/F");
TBranch* HgtBranch = inTree->Branch("BeamHgt", &BeamHgt, "BeamHgt/F");
TBranch* MeanPE_T1 =
inTree->Branch("MeanPE_T1", &MeanT1, "MeanPE_T1/F");
TBranch* MeanPE_T2 =
inTree->Branch("MeanPE_T2", &MeanT2, "MeanPE_T2/F");
unsigned long long int measPE_T1 = 0;
unsigned long long int measPE_T2 = 0;
double Edep_H1 =0;
double Edep_H2 = 0;
inTree->SetBranchAddress("MeasNumPhotons_PMTT1", &measPE_T1);
inTree->SetBranchAddress("MeasNumPhotons_PMTT2", &measPE_T2);
inTree->SetBranchAddress("Edep_H1", &Edep_H1);
inTree->SetBranchAddress("Edep_H2", &Edep_H2);
Long64_t nentries = inTree->GetEntries();
int numAvg = 0;
for(int k = 0; k<nentries; k++){
inTree->GetEntry(k);
//Calculate means
if((Edep_H1!=0)&&(Edep_H2!=0)){
MeanT1 += measPE_T1;
MeanT2 += measPE_T2;
numAvg++;
}
}
MeanT1 = MeanT1/numAvg;
MeanT2 = MeanT2/numAvg;
for(int k = 0; k<nentries; k++){
BeamEn = valEnergy.at(i);
BeamHgt = valHeight.at(j);
EnBranch->Fill();
HgtBranch->Fill();
MeanPE_T1->Fill();
MeanPE_T2->Fill();
}
inTree->Write("", TObject::kOverwrite);
fname = fname + "/Results";
OutChain->Add(fname.c_str());
infile->Close();
cout << "Done!" << endl;
}
}
cout << "OutChain has " << OutChain->GetEntries() << " entries." << endl;
TFile* OutFile = new TFile("ChainedRuns.root", "RECREATE");
OutChain->Write();
OutFile->Close();
return;
}
示例15: mergeDigits
//.........这里部分代码省略.........
//const AliPHOSDigit *digit = prl->Digit(iDig);
AliPHOSDigit *digit = (AliPHOSDigit*)phosDigits->At(iDig);
nDigits++;
for (Int_t n = 0; n < nMyDigits; n++)
{
AliPHOSDigit *myDigit = (AliPHOSDigit*)mydigits->At(n);
if (digit->GetId() == myDigit->GetId())
{
nOverlappingDigits++;
break;
}
}
}
if(nOverlappingDigits == nMyDigits)
{
std::cout << "Digits alredy embedded!" << std::endl;
continue;
}
for (Int_t iDig = 0; iDig < nMyDigits; iDig++)
{
AliPHOSDigit *myDigit = (AliPHOSDigit*)mydigits->At(iDig);
if (myDigit)
{
for (Int_t n = 0; n < nPhosDigits; n++)
{
//const AliPHOSDigit *digit = prl->Digit(n);
AliPHOSDigit *digit = (AliPHOSDigit*)phosDigits->At(n);
if (digit->GetId() == myDigit->GetId())
{
digit->SetALTROSamplesHG(0, 0);
digit->SetALTROSamplesLG(0, 0);
*digit += *myDigit;
myDigit = 0;
break;
}
}
if (myDigit)
{
TClonesArray *digArray = prl->Digits();
AliPHOSDigit *newDig = new((*digArray)[nPhosDigits+nNewDigits]) AliPHOSDigit(*myDigit);
newDig->SetALTROSamplesHG(0, 0);
newDig->SetALTROSamplesLG(0, 0);
nNewDigits++;
}
}
}
phosDigits->Compress();
Int_t ndigits = phosDigits->GetEntries() ;
phosDigits->Sort();
// Remove digits that are flagged bad in BCM. Then remove digits that are below threshold
for (Int_t i = 0 ; i < ndigits ; i++)
{
AliPHOSDigit *digit = static_cast<AliPHOSDigit*>( phosDigits->At(i) ) ;
//std::cout << digit->GetId() << std::endl;
if(digit->GetId())
{
vector<Int_t>::iterator it;
it = std::find (badChannels.begin(), badChannels.end(), digit->GetId() );
if(*it)
{
digit->SetEnergy(0.0);
}
}
if(digit->GetEnergy() <= recoParam->GetGlobalAltroThreshold())
{
phosDigits->RemoveAt(i);
}
}
//Set indexes in list of digits and make true digitization of the energy
phosDigits->Compress();
phosDigits->Sort();
ndigits = phosDigits->GetEntries();
for (Int_t i = 0 ; i < ndigits ; i++)
{
AliPHOSDigit *digit = static_cast<AliPHOSDigit*>( phosDigits->At(i) ) ;
digit->SetIndexInList(i) ;
}
// -- create Digits branch
Int_t bufferSize = 32000 ;
TObjArray *branchList = prl->TreeD()->GetListOfBranches();
branchList->RemoveAt(0);
TBranch * digitsBranch = prl->TreeD()->Branch("PHOS","TClonesArray",&phosDigits,bufferSize);
digitsBranch->Fill() ;
prl->WriteDigits("OVERWRITE");
}
prl->WriteDigits("OVERWRITE");
std::cout << "# Digits: " << nDigits << std::endl;
std::cout << "# Embedded digits: " << nEmbedDigits << std::endl;
std::cout << "# Overlapping digits: " << nOverlappingDigits << std::endl;
std::cout << "# New digits: " << nNewDigits << std::endl;
return 0;
}