本文整理汇总了C++中SymmTensor类的典型用法代码示例。如果您正苦于以下问题:C++ SymmTensor类的具体用法?C++ SymmTensor怎么用?C++ SymmTensor使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SymmTensor类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
void
AxisymmetricRZ::computeStrain( const unsigned qp,
const SymmTensor & total_strain_old,
SymmTensor & total_strain_new,
SymmTensor & strain_increment )
{
strain_increment.xx() = _grad_disp_r[qp](0);
strain_increment.yy() = _grad_disp_z[qp](1);
strain_increment.zz() = (_solid_model.q_point(qp)(0) != 0.0 ? _disp_r[qp]/_solid_model.q_point(qp)(0) : 0.0);
strain_increment.xy() = 0.5*(_grad_disp_r[qp](1) + _grad_disp_z[qp](0));
if (_large_strain)
{
strain_increment.xx() += 0.5*(_grad_disp_r[qp](0)*_grad_disp_r[qp](0) +
_grad_disp_z[qp](0)*_grad_disp_z[qp](0));
strain_increment.yy() += 0.5*(_grad_disp_r[qp](1)*_grad_disp_r[qp](1) +
_grad_disp_z[qp](1)*_grad_disp_z[qp](1));
strain_increment.zz() += 0.5*(strain_increment.zz()*strain_increment.zz());
strain_increment.xy() += 0.5*(_grad_disp_r[qp](0)*_grad_disp_r[qp](1) +
_grad_disp_z[qp](0)*_grad_disp_z[qp](1));
}
total_strain_new = strain_increment;
strain_increment -= total_strain_old;
}
示例2: small
bool
ConstitutiveModel::applyThermalStrain(unsigned qp,
SymmTensor & strain_increment,
SymmTensor & d_strain_dT)
{
if (_has_temp && _t_step != 0)
{
Real inc_thermal_strain;
Real d_thermal_strain_d_temp;
Real old_temp;
if (_t_step == 1 && _has_stress_free_temp)
old_temp = _stress_free_temp;
else
old_temp = _temperature_old[qp];
Real current_temp = _temperature[qp];
Real delta_t = current_temp - old_temp;
Real alpha = _alpha;
if (_alpha_function)
{
Point p;
Real alpha_current_temp = _alpha_function->value(current_temp,p);
Real alpha_old_temp = _alpha_function->value(old_temp,p);
if (_mean_alpha_function)
{
Real small(1e-6);
Real numerator = alpha_current_temp * (current_temp - _ref_temp) - alpha_old_temp * (old_temp - _ref_temp);
Real denominator = 1.0 + alpha_old_temp * (old_temp - _ref_temp);
if (denominator < small)
mooseError("Denominator too small in thermal strain calculation");
inc_thermal_strain = numerator / denominator;
d_thermal_strain_d_temp = alpha_current_temp * (current_temp - _ref_temp);
}
else
{
inc_thermal_strain = delta_t * 0.5 * (alpha_current_temp + alpha_old_temp);
d_thermal_strain_d_temp = alpha_current_temp;
}
}
else
{
inc_thermal_strain = delta_t * alpha;
d_thermal_strain_d_temp = alpha;
}
strain_increment.addDiag(-inc_thermal_strain);
d_strain_dT.addDiag(-d_thermal_strain_d_temp);
}
bool modified = true;
return modified;
}
示例3: volumetricStrain
Real
volumetricStrain(const SymmTensor & symm_strain)
{
Real value = symm_strain.trace();
value += symm_strain.xx() * symm_strain.yy() + symm_strain.yy() * symm_strain.zz() +
symm_strain.zz() * symm_strain.xx() +
symm_strain.xx() * symm_strain.yy() * symm_strain.zz();
return value;
}
示例4: sum_C3x1
Real
StressDivergence::computeQpJacobian()
{
Real sum_C3x3 = _Jacobian_mult[_qp].sum_3x3();
RealGradient sum_C3x1 = _Jacobian_mult[_qp].sum_3x1();
Real jacobian = 0.0;
// B^T_i * C * B_j
jacobian += _Jacobian_mult[_qp].stiffness(
_component, _component, _grad_test[_i][_qp], _grad_phi[_j][_qp]); // B^T_i * C *B_j
if (_volumetric_locking_correction)
{
// jacobian = Bbar^T_i * C * Bbar_j where Bbar = B + Bvol
// jacobian = B^T_i * C * B_j + Bvol^T_i * C * Bvol_j + Bvol^T_i * C * B_j + B^T_i * C * Bvol_j
// Bvol^T_i * C * Bvol_j
jacobian += sum_C3x3 * (_avg_grad_test[_i][_component] - _grad_test[_i][_qp](_component)) *
(_avg_grad_phi[_j][_component] - _grad_phi[_j][_qp](_component)) / 9.0;
// B^T_i * C * Bvol_j
jacobian += sum_C3x1(_component) * _grad_test[_i][_qp](_component) *
(_avg_grad_phi[_j][_component] - _grad_phi[_j][_qp](_component)) / 3.0;
// Bvol^T_i * C * B_j
SymmTensor phi;
if (_component == 0)
{
phi.xx() = _grad_phi[_j][_qp](0);
phi.xy() = _grad_phi[_j][_qp](1);
phi.xz() = _grad_phi[_j][_qp](2);
}
else if (_component == 1)
{
phi.yy() = _grad_phi[_j][_qp](1);
phi.xy() = _grad_phi[_j][_qp](0);
phi.yz() = _grad_phi[_j][_qp](2);
}
else if (_component == 2)
{
phi.zz() = _grad_phi[_j][_qp](2);
phi.xz() = _grad_phi[_j][_qp](0);
phi.yz() = _grad_phi[_j][_qp](1);
}
SymmTensor tmp(_Jacobian_mult[_qp] * phi);
jacobian += (tmp.xx() + tmp.yy() + tmp.zz()) *
(_avg_grad_test[_i][_component] - _grad_test[_i][_qp](_component)) / 3.0;
}
if (_dt > 0)
return jacobian * (1 + _alpha + _zeta / _dt);
else
return jacobian;
}
示例5:
void
PlaneStrain::computeStrain( const unsigned qp,
const SymmTensor & total_strain_old,
SymmTensor & total_strain_new,
SymmTensor & strain_increment )
{
strain_increment.xx() = _grad_disp_x[qp](0);
strain_increment.yy() = _grad_disp_y[qp](1);
strain_increment.zz() = 0;
strain_increment.xy() = 0.5*(_grad_disp_x[qp](1) + _grad_disp_y[qp](0));
strain_increment.yz() = 0;
strain_increment.zx() = 0;
if (_large_strain)
{
strain_increment.xx() += 0.5*(_grad_disp_x[qp](0)*_grad_disp_x[qp](0) +
_grad_disp_y[qp](0)*_grad_disp_y[qp](0));
strain_increment.yy() += 0.5*(_grad_disp_x[qp](1)*_grad_disp_x[qp](1) +
_grad_disp_y[qp](1)*_grad_disp_y[qp](1));
strain_increment.xy() += 0.5*(_grad_disp_x[qp](0)*_grad_disp_x[qp](1) +
_grad_disp_y[qp](0)*_grad_disp_y[qp](1));
}
total_strain_new = strain_increment;
strain_increment -= total_strain_old;
}
示例6: vonMisesStress
Real
vonMisesStress(const SymmTensor & symm_stress)
{
Real value = std::pow(symm_stress.xx() - symm_stress.yy(), 2) +
std::pow(symm_stress.yy() - symm_stress.zz(), 2) +
std::pow(symm_stress.zz() - symm_stress.xx(), 2) +
6 * (std::pow(symm_stress.xy(), 2) + std::pow(symm_stress.yz(), 2) +
std::pow(symm_stress.zx(), 2));
return std::sqrt(value / 2.0);
}
示例7:
Real
StressDivergenceRSpherical::computeQpOffDiagJacobian(unsigned int jvar)
{
if ( _temp_coupled && jvar == _temp_var )
{
SymmTensor test;
test.xx() = _grad_test[_i][_qp](0);
test.yy() = _test[_i][_qp] / _q_point[_qp](0);
test.zz() = test.yy();
return _d_stress_dT[_qp].doubleContraction(test) * _phi[_j][_qp];
}
return 0;
}
示例8: formPermeabilityTensor
bool PoroElasticity::formPermeabilityTensor (SymmTensor& K,
const Vectors&,
const FiniteElement&,
const Vec3& X) const
{
const PoroMaterial* pmat = dynamic_cast<const PoroMaterial*>(material);
if (!pmat) return false;
Vec3 permeability = pmat->getPermeability(X);
K.zero();
for (size_t i = 1; i <= K.dim(); i++)
K(i,i) = permeability(i);
return true;
}
示例9: eval
Real
MaterialTensorAux::principalValue( const SymmTensor & tensor, unsigned int index )
{
ColumnMajorMatrix eval(3,1);
ColumnMajorMatrix evec(3,3);
tensor.columnMajorMatrix().eigen(eval, evec);
// Eigen computes low to high. We want high first.
int i = -index + 2;
return eval(i);
}
示例10: calcPrincipleValues
Real
calcPrincipleValues(const SymmTensor & symm_tensor, unsigned int index, RealVectorValue & direction)
{
ColumnMajorMatrix eval(3,1);
ColumnMajorMatrix evec(3,3);
symm_tensor.columnMajorMatrix().eigen(eval, evec);
// Eigen computes low to high. We want high first.
direction(0) = evec(0,index);
direction(1) = evec(1,index);
direction(2) = evec(2,index);
return eval(index);
}
示例11: calculateJacobian
Real
StressDivergenceRZ::computeQpOffDiagJacobian(unsigned int jvar)
{
if ( _rdisp_coupled && jvar == _rdisp_var )
{
return calculateJacobian( _component, 0 );
}
else if ( _zdisp_coupled && jvar == _zdisp_var )
{
return calculateJacobian( _component, 1 );
}
else if ( _temp_coupled && jvar == _temp_var )
{
SymmTensor test;
if (_component == 0)
{
test.xx() = _grad_test[_i][_qp](0);
test.xy() = 0.5*_grad_test[_i][_qp](1);
test.zz() = _test[_i][_qp] / _q_point[_qp](0);
}
else
{
test.xy() = 0.5*_grad_test[_i][_qp](0);
test.yy() = _grad_test[_i][_qp](1);
}
return _d_stress_dT[_qp].doubleContraction(test) * _phi[_j][_qp];
}
return 0;
}
示例12: Fhat
void
Nonlinear::computeStrainIncrement( const ColumnMajorMatrix & Fhat,
SymmTensor & strain_increment )
{
//
// A calculation of the strain at the mid-interval is probably more
// accurate (second vs. first order). This would require the
// incremental deformation gradient at the mid-step, which we
// currently don't have. We would then have to calculate the
// rotation for the whole step.
//
//
// We are looking for:
// log( Uhat )
// = log( sqrt( Fhat^T*Fhat ) )
// = log( sqrt( Chat ) )
// A Taylor series expansion gives:
// ( Chat - 0.25 * Chat^T*Chat - 0.75 * I )
// = ( - 0.25 * Chat^T*Chat + Chat - 0.75 * I )
// = ( (0.25*Chat - 0.75*I) * (Chat - I) )
// = ( B * A )
// B
// = 0.25*Chat - 0.75*I
// = 0.25*(Chat - I) - 0.5*I
// = 0.25*A - 0.5*I
//
const Real Uxx = Fhat(0,0);
const Real Uxy = Fhat(0,1);
const Real Uxz = Fhat(0,2);
const Real Uyx = Fhat(1,0);
const Real Uyy = Fhat(1,1);
const Real Uyz = Fhat(1,2);
const Real Uzx = Fhat(2,0);
const Real Uzy = Fhat(2,1);
const Real Uzz = Fhat(2,2);
const Real Axx = Uxx*Uxx + Uyx*Uyx + Uzx*Uzx - 1.0;
const Real Axy = Uxx*Uxy + Uyx*Uyy + Uzx*Uzy;
const Real Axz = Uxx*Uxz + Uyx*Uyz + Uzx*Uzz;
const Real Ayy = Uxy*Uxy + Uyy*Uyy + Uzy*Uzy - 1.0;
const Real Ayz = Uxy*Uxz + Uyy*Uyz + Uzy*Uzz;
const Real Azz = Uxz*Uxz + Uyz*Uyz + Uzz*Uzz - 1.0;
const Real Bxx = 0.25 * Axx - 0.5;
const Real Bxy = 0.25 * Axy;
const Real Bxz = 0.25 * Axz;
const Real Byy = 0.25 * Ayy - 0.5;
const Real Byz = 0.25 * Ayz;
const Real Bzz = 0.25 * Azz - 0.5;
strain_increment.xx( -(Bxx*Axx + Bxy*Axy + Bxz*Axz) );
strain_increment.xy( -(Bxx*Axy + Bxy*Ayy + Bxz*Ayz) );
strain_increment.zx( -(Bxx*Axz + Bxy*Ayz + Bxz*Azz) );
strain_increment.yy( -(Bxy*Axy + Byy*Ayy + Byz*Ayz) );
strain_increment.yz( -(Bxy*Axz + Byy*Ayz + Byz*Azz) );
strain_increment.zz( -(Bxz*Axz + Byz*Ayz + Bzz*Azz) );
}
示例13:
ColumnMajorMatrix
CrackFrontDefinition::rotateToCrackFrontCoords(const SymmTensor tensor, const unsigned int node_index) const
{
ColumnMajorMatrix tensor_CMM;
tensor_CMM(0,0) = tensor.xx();
tensor_CMM(0,1) = tensor.xy();
tensor_CMM(0,2) = tensor.xz();
tensor_CMM(1,0) = tensor.xy();
tensor_CMM(1,1) = tensor.yy();
tensor_CMM(1,2) = tensor.yz();
tensor_CMM(2,0) = tensor.xz();
tensor_CMM(2,1) = tensor.yz();
tensor_CMM(2,2) = tensor.zz();
ColumnMajorMatrix tmp = _rot_matrix[node_index] * tensor_CMM;
ColumnMajorMatrix rotT = _rot_matrix[node_index].transpose();
ColumnMajorMatrix rotated_tensor = tmp * rotT;
return rotated_tensor;
}
示例14: CC
void
CardiacHolzapfel2009Material::computeQpStressProperties(const SymmTensor &C, const SymmTensor & /*E*/)
{
const SymmTensor CC(square(C));
// invariants (We will not need all of them. However, defining them avoids to forget any.)
const Real I1(C.trace());
/*const Real I2(0.5*(I1*I1-CC.trace()));*/
/*const Real I3(_J[_qp]); */
const Real I4f(_Ef[_qp]*(C*_Ef[_qp]));
const Real I4s(_Es[_qp]*(C*_Es[_qp]));
/*const Real I4n(_En[_qp]*(C*_En[_qp])); */
/*const Real I5f(_Ef[_qp]*(CC*_Ef[_qp]));*/
/*const Real I5s(_Es[_qp]*(CC*_Es[_qp]));*/
/*const Real I5n(_En[_qp]*(CC*_En[_qp]));*/
const Real I8fs(_Ef[_qp]*(C*_Es[_qp]));
/*const Real I8fn(_Ef[_qp]*(C*_En[_qp]));*/
/*const Real I8sn(_Es[_qp]*(C*_En[_qp]));*/
// the following will be needed in the stress as well as in the energy and stress_derivative
const Real i_term( _p[A1 ]*std::exp(_p[B1 ]*(I1 -3) ) );
const Real f_term( 2*_p[Af ]*std::exp(_p[Bf ]*(I4f-1)*(I4f-1)) );
const Real s_term( 2*_p[As ]*std::exp(_p[Bs ]*(I4s-1)*(I4s-1)) );
const Real fs_term( _p[Afs]*std::exp(_p[Bfs]* I8fs * I8fs ) );
// elastic energy contribution
_W[_qp] = i_term /(2*_p[B1 ])
+ ( f_term - 2*_p[Af ])/(2*_p[Bf ])
+ ( s_term - 2*_p[As ])/(2*_p[Bs ])
+ (fs_term - 2*_p[Afs])/(2*_p[Bfs]);
// tensors for constructing stress and stress_derivative
const SymmTensor EfEf(kron(_Ef[_qp]));
const SymmTensor EsEs(kron(_Es[_qp]));
const SymmTensor EfEs(kronSym(_Ef[_qp],_Es[_qp]));
// stress
_stress[_qp] = scaledID(i_term) + EfEf*(I4f-1)*f_term + EsEs*(I4s-1)*s_term + EfEs*I8fs*fs_term;
// stress derivative /* fancy lambda function syntax makes things much easier here */
_stress_derivative[_qp].fill_from_minor_iter( [&](const unsigned int M,
const unsigned int N,
const unsigned int P,
const unsigned int Q) -> Real { return _p[B1 ] * i_term * _id(M,N) * _id(P,Q)
+ (1 + (I4f-1)*(I4f-1)*2*_p[Bf ]) * f_term * EfEf(M,N) * EfEf(P,Q)
+ (1 + (I4f-1)*(I4f-1)*2*_p[Bf ]) * s_term * EsEs(M,N) * EsEs(P,Q)
+ (1 + I8fs *2*_p[Bfs]) * fs_term * EfEs(M,N) * EfEs(P,Q); } );
}
示例15: kinematics
bool Elasticity::kinematics (const Vector& eV,
const Vector& N, const Matrix& dNdX, double r,
Matrix& B, Tensor&, SymmTensor& eps) const
{
// Evaluate the strain-displacement matrix, B
if (axiSymmetry)
{
if (!this->formBmatrix(B,N,dNdX,r))
return false;
}
else
{
if (!this->formBmatrix(B,dNdX))
return false;
}
if (eV.empty() || eps.dim() == 0)
return true;
// Evaluate the strains
return B.multiply(eV,eps); // eps = B*eV
}