本文整理汇总了C++中SweepParams类的典型用法代码示例。如果您正苦于以下问题:C++ SweepParams类的具体用法?C++ SweepParams怎么用?C++ SweepParams使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SweepParams类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: makeStateInfo
//Initialize stateinfo using the rotation matrices
void SpinAdapted::Sweep::InitializeStateInfo(SweepParams &sweepParams, const bool &forward, int currentstate)
{
sweepParams.set_sweep_parameters();
sweepParams.set_block_iter() = 0;
std::vector<int> sites;
int new_site, wave_site;
if (forward)
new_site = 0;
else
new_site = dmrginp.spinAdapted() ? dmrginp.last_site()-1 : dmrginp.last_site()/2-1;
if (dmrginp.spinAdapted())
sites.push_back(new_site);
else {
sites.push_back(2*new_site);
sites.push_back(2*new_site+1);
std::sort(sites.begin(), sites.end());
}
//only need statinfos
StateInfo stateInfo1; makeStateInfo(stateInfo1, new_site);
StateInfo::store(forward, sites, stateInfo1, currentstate);
for (; sweepParams.get_block_iter() < sweepParams.get_n_iters(); ) {
if (forward)
new_site++;
else
new_site--;
if (dmrginp.spinAdapted())
sites.push_back(new_site);
else {
sites.push_back(2*new_site);
sites.push_back(2*new_site+1);
std::sort(sites.begin(), sites.end());
}
StateInfo siteState, newState1;
makeStateInfo(siteState, new_site);
TensorProduct(stateInfo1, siteState, newState1, NO_PARTICLE_SPIN_NUMBER_CONSTRAINT);
newState1.CollectQuanta();
//make the newstate
std::vector<Matrix> rotation1;
LoadRotationMatrix (sites, rotation1, currentstate);
StateInfo renormState1;
SpinAdapted::StateInfo::transform_state(rotation1, newState1, renormState1);
StateInfo::store(forward, sites, renormState1, currentstate);
stateInfo1 = renormState1;
++sweepParams.set_block_iter();
}
}
示例2: system
void SpinAdapted::Sweep::tiny(double sweep_tol)
{
#ifndef SERIAL
if(mpigetrank() == 0) {
#endif
pout.precision(12);
int nroots = dmrginp.nroots(0);
SweepParams sweepParams;
sweepParams.set_sweep_parameters();
StackSpinBlock system(0,dmrginp.last_site()-1, 0, true);
const StateInfo& sinfo = system.get_stateInfo();
SpinQuantum hq(0,SpinSpace(0),IrrepSpace(0));
for (int i=0; i<sinfo.totalStates; i++) {
if (sinfo.quanta[i] == dmrginp.molecule_quantum()) {
StackMatrix& h = system.get_op_array(HAM).get_element(0).at(0)->operator_element(i,i);
DiagonalMatrix energies(h.Nrows()); energies = 0.0;
diagonalise(h, energies);
for (int x=0; x<nroots; x++)
pout << "fullci energy "<< energies(x+1)<<endl;
if (mpigetrank() == 0)
{
#ifndef MOLPRO
FILE* f = fopen("dmrg.e", "wb");
#else
std::string efile;
efile = str(boost::format("%s%s") % dmrginp.load_prefix() % "/dmrg.e" );
FILE* f = fopen(efile.c_str(), "wb");
#endif
for(int j=0;j<nroots;++j) {
double e = energies(j+1);
fwrite( &e, 1, sizeof(double), f);
}
fclose(f);
}
return;
}
}
pout << "The wavefunction symmetry is not possible with the orbitals supplied."<<endl;
abort();
#ifndef SERIAL
}
#endif
}
示例3: do_one
double SweepOnepdm::do_one(SweepParams &sweepParams, const bool &warmUp, const bool &forward, const bool &restart, const int &restartSize)
{
SpinBlock system;
const int nroots = dmrginp.nroots();
std::vector<double> finalEnergy(nroots,0.);
std::vector<double> finalEnergy_spins(nroots,0.);
double finalError = 0.;
Matrix onepdm(2*dmrginp.last_site(), 2*dmrginp.last_site());onepdm=0.0;
for (int i=0; i<nroots; i++)
for (int j=0; j<=i; j++)
save_onepdm_binary(onepdm, i ,j);
sweepParams.set_sweep_parameters();
// a new renormalisation sweep routine
pout << ((forward) ? "\t\t\t Starting renormalisation sweep in forwards direction" : "\t\t\t Starting renormalisation sweep in backwards direction") << endl;
pout << "\t\t\t ============================================================================ " << endl;
InitBlocks::InitStartingBlock (system,forward, sweepParams.get_forward_starting_size(), sweepParams.get_backward_starting_size(), restartSize, restart, warmUp);
sweepParams.set_block_iter() = 0;
pout << "\t\t\t Starting block is :: " << endl << system << endl;
SpinBlock::store (forward, system.get_sites(), system); // if restart, just restoring an existing block --
sweepParams.savestate(forward, system.get_sites().size());
bool dot_with_sys = true;
sweepParams.set_guesstype() = TRANSPOSE;
SpinBlock newSystem;
BlockAndDecimate (sweepParams, system, newSystem, warmUp, dot_with_sys);
pout.precision(12);
pout << "\t\t\t The lowest sweep energy : "<< sweepParams.get_lowest_energy()[0]+dmrginp.get_coreenergy()<<endl;
pout << "\t\t\t ============================================================================ " << endl;
for (int i=0; i<nroots; i++)
for (int j=0; j<=i; j++) {
load_onepdm_binary(onepdm, i ,j);
accumulate_onepdm(onepdm);
save_onepdm_spatial_text(onepdm, i ,j);
save_onepdm_text(onepdm, i ,j);
save_onepdm_spatial_binary(onepdm, i ,j);
}
return sweepParams.get_lowest_energy()[0];
}
示例4: compress
void compress(double sweep_tol, int targetState, int baseState)
{
double last_fe = 10.e6;
double last_be = 10.e6;
double old_fe = 0.;
double old_be = 0.;
SweepParams sweepParams;
bool direction;
sweepParams.current_root() = -1;
//this is the warmup sweep, the baseState is used as the initial guess for the targetState
last_fe = SweepCompress::do_one(sweepParams, true, true, false, 0, targetState, baseState);
direction = false;
while ( true)
{
old_fe = last_fe;
old_be = last_be;
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
break;
last_be = SweepCompress::do_one(sweepParams, false, false, false, 0, targetState, baseState);
direction = true;
pout << "\t\t\t Finished Sweep Iteration "<<sweepParams.get_sweep_iter()<<endl;
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
break;
last_fe = SweepCompress::do_one(sweepParams, false, true, false, 0, targetState, baseState);
direction = false;
pout << "\t\t\t Finished Sweep Iteration "<<sweepParams.get_sweep_iter()<<endl;
}
//we finally canonicalize the targetState
//one has to canonicalize the wavefunction with atleast 3 sweeps, this is a quirk of the way
//we transform wavefunction
if (mpigetrank()==0) {
Sweep::InitializeStateInfo(sweepParams, !direction, targetState);
Sweep::InitializeStateInfo(sweepParams, direction, targetState);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, targetState);
Sweep::CanonicalizeWavefunction(sweepParams, direction, targetState);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, targetState);
Sweep::InitializeStateInfo(sweepParams, !direction, targetState);
Sweep::InitializeStateInfo(sweepParams, direction, targetState);
}
}
示例5: dmrg
void dmrg(double sweep_tol)
{
double last_fe = 10.e6;
double last_be = 10.e6;
double old_fe = 0.;
double old_be = 0.;
SweepParams sweepParams;
int old_states=sweepParams.get_keep_states();
int new_states;
double old_error=0.0;
double old_energy=0.0;
// warm up sweep ...
bool dodiis = false;
int domoreIter = 0;
bool direction;
//this is regular dmrg calculation
if(!dmrginp.setStateSpecific()) {
sweepParams.current_root() = -1;
last_fe = Sweep::do_one(sweepParams, true, true, false, 0);
direction = false;
while ((fabs(last_fe - old_fe) > sweep_tol) || (fabs(last_be - old_be) > sweep_tol) ||
(dmrginp.algorithm_method() == TWODOT_TO_ONEDOT && dmrginp.twodot_to_onedot_iter()+1 >= sweepParams.get_sweep_iter()) )
{
old_fe = last_fe;
old_be = last_be;
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
break;
last_be = Sweep::do_one(sweepParams, false, false, false, 0);
direction = true;
pout << "\t\t\t Finished Sweep Iteration "<<sweepParams.get_sweep_iter()<<endl;
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
break;
//For obtaining the extrapolated energy
old_states=sweepParams.get_keep_states();
new_states=sweepParams.get_keep_states_ls();
last_fe = Sweep::do_one(sweepParams, false, true, false, 0);
direction = false;
new_states=sweepParams.get_keep_states();
pout << "\t\t\t Finished Sweep Iteration "<<sweepParams.get_sweep_iter()<<endl;
if (domoreIter == 2) {
dodiis = true;
break;
}
}
}
else { //this is state specific calculation
const int nroots = dmrginp.nroots();
bool direction=true;
int restartsize;
//sweepParams.restorestate(direction, restartsize);
//sweepParams.set_sweep_iter() = 0;
//sweepParams.set_restart_iter() = 0;
algorithmTypes atype;
pout << "STARTING STATE SPECIFIC CALCULATION "<<endl;
for (int i=0; i<nroots; i++) {
atype = dmrginp.algorithm_method();
dmrginp.set_algorithm_method() = ONEDOT;
sweepParams.current_root() = i;
p1out << "RUNNING GENERATE BLOCKS FOR STATE "<<i<<endl;
if (mpigetrank()==0) {
Sweep::InitializeStateInfo(sweepParams, direction, i);
Sweep::InitializeStateInfo(sweepParams, !direction, i);
Sweep::CanonicalizeWavefunction(sweepParams, direction, i);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, i);
Sweep::CanonicalizeWavefunction(sweepParams, direction, i);
Sweep::InitializeStateInfo(sweepParams, direction, i);
Sweep::InitializeStateInfo(sweepParams, !direction, i);
}
for (int j=0; j<i ; j++) {
int integralIndex = 0;
Sweep::InitializeOverlapSpinBlocks(sweepParams, direction, i, j, integralIndex);
Sweep::InitializeOverlapSpinBlocks(sweepParams, !direction, i, j, integralIndex);
}
dmrginp.set_algorithm_method() = atype;
p1out << "RUNNING GENERATE BLOCKS FOR STATE "<<i<<endl;
SweepGenblock::do_one(sweepParams, false, !direction, false, 0, i, i);
sweepParams.set_sweep_iter() = 0;
sweepParams.set_restart_iter() = 0;
sweepParams.savestate(!direction, restartsize);
pout << "STATE SPECIFIC CALCULATION FOR STATE: "<<i<<endl;
//.........这里部分代码省略.........
示例6: restart
void restart(double sweep_tol, bool reset_iter)
{
double last_fe = 100.;
double last_be = 100.;
double old_fe = 0.;
double old_be = 0.;
bool direction;
int restartsize;
SweepParams sweepParams;
bool dodiis = false;
int domoreIter = 2;
sweepParams.restorestate(direction, restartsize);
if (!dmrginp.setStateSpecific()) {
if(reset_iter) { //this is when you restart from the start of the sweep
sweepParams.set_sweep_iter() = 0;
sweepParams.set_restart_iter() = 0;
}
if (restartwarm)
last_fe = Sweep::do_one(sweepParams, true, direction, true, restartsize);
else
last_fe = Sweep::do_one(sweepParams, false, direction, true, restartsize);
while ((fabs(last_fe - old_fe) > sweep_tol) || (fabs(last_be - old_be) > sweep_tol) ||
(dmrginp.algorithm_method() == TWODOT_TO_ONEDOT && dmrginp.twodot_to_onedot_iter()+1 >= sweepParams.get_sweep_iter()) )
{
old_fe = last_fe;
old_be = last_be;
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
break;
last_be = Sweep::do_one(sweepParams, false, !direction, false, 0);
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
break;
last_fe = Sweep::do_one(sweepParams, false, direction, false, 0);
}
}
else { //this is state specific calculation
const int nroots = dmrginp.nroots();
bool direction;
int restartsize;
sweepParams.restorestate(direction, restartsize);
//initialize state and canonicalize all wavefunctions
int currentRoot = sweepParams.current_root();
for (int i=0; i<nroots; i++) {
sweepParams.current_root() = i;
if (mpigetrank()==0) {
Sweep::InitializeStateInfo(sweepParams, direction, i);
Sweep::InitializeStateInfo(sweepParams, !direction, i);
Sweep::CanonicalizeWavefunction(sweepParams, direction, i);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, i);
Sweep::CanonicalizeWavefunction(sweepParams, direction, i);
}
}
//now generate overlaps with all the previous wavefunctions
for (int i=0; i<currentRoot; i++) {
sweepParams.current_root() = i;
if (mpigetrank()==0) {
for (int j=0; j<i; j++) {
int integralIndex = 0;
Sweep::InitializeOverlapSpinBlocks(sweepParams, !direction, i, j, integralIndex);
Sweep::InitializeOverlapSpinBlocks(sweepParams, direction, i, j, integralIndex);
}
}
}
sweepParams.current_root() = currentRoot;
if (sweepParams.current_root() <0) {
p1out << "This is most likely not a restart calculation and should be done without the restart command!!"<<endl;
p1out << "Aborting!!"<<endl;
exit(0);
}
pout << "RESTARTING STATE SPECIFIC CALCULATION OF STATE "<<sweepParams.current_root()<<" AT SWEEP ITERATION "<<sweepParams.get_sweep_iter()<<endl;
//this is so that the iteration is not one ahead after generate block for restart
--sweepParams.set_sweep_iter(); sweepParams.savestate(direction, restartsize);
for (int i=sweepParams.current_root(); i<nroots; i++) {
sweepParams.current_root() = i;
p1out << "RUNNING GENERATE BLOCKS FOR STATE "<<i<<endl;
if (mpigetrank()==0) {
Sweep::InitializeStateInfo(sweepParams, direction, i);
Sweep::InitializeStateInfo(sweepParams, !direction, i);
Sweep::CanonicalizeWavefunction(sweepParams, direction, i);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, i);
Sweep::CanonicalizeWavefunction(sweepParams, direction, i);
for (int j=0; j<i ; j++) {
int integralIndex = 0;
Sweep::InitializeOverlapSpinBlocks(sweepParams, direction, i, j, integralIndex);
Sweep::InitializeOverlapSpinBlocks(sweepParams, !direction, i, j, integralIndex);
//.........这里部分代码省略.........
示例7: calldmrg
int calldmrg(char* input, char* output)
{
//sleep(15);
streambuf *backup;
backup = cout.rdbuf();
ofstream file;
if (output != 0) {
file.open(output);
pout.rdbuf(file.rdbuf());
}
license();
ReadInput(input);
MAX_THRD = dmrginp.thrds_per_node()[mpigetrank()];
#ifdef _OPENMP
omp_set_num_threads(MAX_THRD);
#endif
pout.precision (12);
//Initializing timer calls
dmrginp.initCumulTimer();
double sweep_tol = 1e-7;
sweep_tol = dmrginp.get_sweep_tol();
bool direction;
int restartsize;
SweepParams sweepParams;
SweepParams sweep_copy;
bool direction_copy; int restartsize_copy;
Matrix O, H;
switch(dmrginp.calc_type()) {
case (COMPRESS):
{
bool direction; int restartsize;
//sweepParams.restorestate(direction, restartsize);
//sweepParams.set_sweep_iter() = 0;
restartsize = 0;
int targetState, baseState, correctionVector, firstorderstate;
{
direction = true;
//base state is always defined
baseState = dmrginp.baseStates()[0];
//if targetstate is given use it otherwise use basestate+1
if(dmrginp.targetState() == -1)
targetState = dmrginp.baseStates()[0]+1;
else
targetState = dmrginp.targetState();
algorithmTypes atype = dmrginp.algorithm_method();
dmrginp.set_algorithm_method() = ONEDOT;
//initialize state info and canonicalize wavefunction is always done using onedot algorithm
if (mpigetrank()==0) {
Sweep::InitializeStateInfo(sweepParams, direction, baseState);
Sweep::InitializeStateInfo(sweepParams, !direction, baseState);
Sweep::CanonicalizeWavefunction(sweepParams, direction, baseState);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, baseState);
Sweep::CanonicalizeWavefunction(sweepParams, direction, baseState);
}
dmrginp.set_algorithm_method() = atype;
}
//this genblock is required to generate all the nontranspose operators
dmrginp.setimplicitTranspose() = false;
SweepGenblock::do_one(sweepParams, false, false, false, restartsize, baseState, baseState);
compress(sweep_tol, targetState, baseState);
break;
}
case (RESPONSEBW):
{
//compressing the V|\Psi_0>, here \Psi_0 is the basestate and
//its product with V will have a larger bond dimension and is being compressed
//it is called the target state
dmrginp.setimplicitTranspose() = false;
sweepParams.restorestate(direction, restartsize);
algorithmTypes atype = dmrginp.algorithm_method();
dmrginp.set_algorithm_method() = ONEDOT;
if (mpigetrank()==0 && !RESTART && !FULLRESTART) {
for (int l=0; l<dmrginp.projectorStates().size(); l++) {
Sweep::InitializeStateInfo(sweepParams, direction, dmrginp.projectorStates()[l]);
Sweep::InitializeStateInfo(sweepParams, !direction, dmrginp.projectorStates()[l]);
Sweep::CanonicalizeWavefunction(sweepParams, direction, dmrginp.projectorStates()[l]);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, dmrginp.projectorStates()[l]);
Sweep::CanonicalizeWavefunction(sweepParams, direction, dmrginp.projectorStates()[l]);
}
for (int l=0; l<dmrginp.baseStates().size(); l++) {
Sweep::InitializeStateInfo(sweepParams, direction, dmrginp.baseStates()[l]);
Sweep::InitializeStateInfo(sweepParams, !direction, dmrginp.baseStates()[l]);
Sweep::CanonicalizeWavefunction(sweepParams, direction, dmrginp.baseStates()[l]);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, dmrginp.baseStates()[l]);
Sweep::CanonicalizeWavefunction(sweepParams, direction, dmrginp.baseStates()[l]);
//.........这里部分代码省略.........
示例8: hq
void SpinAdapted::Sweep::fullci(double sweep_tol)
{
int integralIndex = 0;
SweepParams sweepParams;
sweepParams.set_sweep_parameters();
StackSpinBlock system, sysdot;
InitBlocks::InitStartingBlock(system, true, 0, 0, sweepParams.get_forward_starting_size(), sweepParams.get_backward_starting_size(), 0, false, true, integralIndex);
int numsites = dmrginp.spinAdapted() ? dmrginp.last_site() : dmrginp.last_site()/2;
int forwardsites = numsites/2+numsites%2;
int backwardsites = numsites - forwardsites;
SpinQuantum hq(0,SpinSpace(0),IrrepSpace(0));
StackSpinBlock newSystem;
for (int i=0; i<forwardsites-1; i++) {
sysdot = StackSpinBlock(i+1, i+1, integralIndex, true);
system.addAdditionalOps();
newSystem.set_integralIndex() = integralIndex;
if (i == forwardsites-2)
newSystem.default_op_components(true, true, false, true);
else
newSystem.default_op_components(false, true, false, true);
newSystem.setstoragetype(DISTRIBUTED_STORAGE);
newSystem.BuildSumBlock (NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, system, sysdot);
long memoryToFree = newSystem.getdata() - system.getdata();
long newsysMemory = newSystem.memoryUsed();
if (i != forwardsites-2) {
if (i != 0) {
newSystem.moveToNewMemory(system.getdata());
Stackmem[0].deallocate(newSystem.getdata()+newSystem.memoryUsed(), memoryToFree);
}
system.clear();
system = newSystem;
}
}
StackSpinBlock environment, newEnvironment, envdot;
InitBlocks::InitStartingBlock(environment, false, 0, 0, sweepParams.get_forward_starting_size(), sweepParams.get_backward_starting_size(), 0, false, true, integralIndex);
for (int i=0;i <backwardsites-1; i++) {
envdot = StackSpinBlock(numsites-2-i, numsites-2-i, integralIndex, true);
environment.addAdditionalOps();
newEnvironment.set_integralIndex() = integralIndex;
if (i == backwardsites-2)
newEnvironment.default_op_components(true, false, true, true);
else
newEnvironment.default_op_components(false, false, true, true);
newEnvironment.setstoragetype(DISTRIBUTED_STORAGE);
newEnvironment.BuildSumBlock (NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, environment, envdot);
if (i!=backwardsites-2) {
if (i != 0) {
long memoryToFree = newEnvironment.getdata() - environment.getdata();
long newenvMemory = newEnvironment.memoryUsed();
newEnvironment.moveToNewMemory(environment.getdata());
Stackmem[0].deallocate(newEnvironment.getdata()+newEnvironment.memoryUsed(), memoryToFree);
}
environment.clear();
environment = newEnvironment;
}
}
pout <<"\t\t\t System Block :: "<< newSystem;
pout <<"\t\t\t Environment Block :: "<< newEnvironment;
newSystem.set_loopblock(true); newEnvironment.set_loopblock(false);
StackSpinBlock big;
InitBlocks::InitBigBlock(newSystem, newEnvironment, big);
int nroots = dmrginp.nroots(0);
std::vector<StackWavefunction> solution(nroots);
solution[0].initialise(dmrginp.effective_molecule_quantum_vec(), big.get_leftBlock()->get_stateInfo(), big.get_rightBlock()->get_stateInfo(), false);
solution[0].Clear();
if (mpigetrank() == 0) {
for (int i=1; i<nroots; i++) {
solution[i].initialise(dmrginp.effective_molecule_quantum_vec(), big.get_leftBlock()->get_stateInfo(), big.get_rightBlock()->get_stateInfo(), false);
solution[i].Clear();
}
}
std::vector<double> energies(nroots);
double tol = sweepParams.get_davidson_tol();
pout << "\t\t\t Solving the Wavefunction "<<endl;
int currentState = 0;
std::vector<StackWavefunction> lowerStates;
Solver::solve_wavefunction(solution, energies, big, tol, BASIC, false, true, false, false, sweepParams.get_additional_noise(), currentState, lowerStates);
pout << "tensormultiply "<<*dmrginp.tensormultiply<<endl;
for (int i=0; i<nroots; i++) {
pout << "fullci energy "<< energies[i]<<endl;
}
if (!mpigetrank())
{
//.........这里部分代码省略.........
示例9: BlockAndDecimate
void SweepGenblock::BlockAndDecimate (SweepParams &sweepParams, SpinBlock& system, SpinBlock& newSystem, const bool &useSlater, const bool& dot_with_sys, int stateA, int stateB)
{
if (dmrginp.outputlevel() > 0)
mcheck("at the start of block and decimate");
p1out << "\t\t\t Performing Blocking"<<endl;
dmrginp.guessgenT -> start();
// figure out if we are going forward or backwards
bool forward = (system.get_sites() [0] == 0);
SpinBlock systemDot;
int systemDotStart, systemDotEnd;
int systemDotSize = sweepParams.get_sys_add() - 1;
if (forward)
{
systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
systemDotEnd = systemDotStart + systemDotSize;
}
else
{
systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
systemDotEnd = systemDotStart - systemDotSize;
}
vector<int> spindotsites(2);
spindotsites[0] = systemDotStart;
spindotsites[1] = systemDotEnd;
dmrginp.sysdotmake->start();
systemDot = SpinBlock(systemDotStart, systemDotEnd, system.get_integralIndex(), stateA==stateB);
dmrginp.sysdotmake->stop();
const int nexact = forward ? sweepParams.get_forward_starting_size() : sweepParams.get_backward_starting_size();
dmrginp.guessgenT -> stop();
dmrginp.datatransfer -> start();
system.addAdditionalCompOps();
dmrginp.datatransfer -> stop();
dmrginp.initnewsystem->start();
InitBlocks::InitNewSystemBlock(system, systemDot, newSystem, stateA, stateB, sweepParams.get_sys_add(), dmrginp.direct(), system.get_integralIndex(), DISTRIBUTED_STORAGE, dot_with_sys, true);
dmrginp.initnewsystem->stop();
pout << "\t\t\t System Block"<<newSystem;
newSystem.printOperatorSummary();
std::vector<Matrix> leftrotateMatrix, rightrotateMatrix;
LoadRotationMatrix (newSystem.get_sites(), leftrotateMatrix, stateA);
LoadRotationMatrix (newSystem.get_sites(), rightrotateMatrix, stateB);
#ifndef SERIAL
mpi::communicator world;
broadcast(world, leftrotateMatrix, 0);
broadcast(world, rightrotateMatrix, 0);
#endif
p1out <<"\t\t\t Performing Renormalization "<<endl<<endl;
dmrginp.operrotT->start();
if (stateB == stateA)
newSystem.transform_operators(leftrotateMatrix);
else
newSystem.transform_operators(leftrotateMatrix, rightrotateMatrix);
dmrginp.operrotT->stop();
if (dmrginp.outputlevel() > 0)
//mcheck("after rotation and transformation of block");
p2out <<newSystem<<endl;
newSystem.printOperatorSummary();
//mcheck("After renorm transform");
p2out << *dmrginp.guessgenT<<" "<<*dmrginp.multiplierT<<" "<<*dmrginp.operrotT<< " "<<globaltimer.totalwalltime()<<" timer "<<endl;
p2out << *dmrginp.makeopsT<<" "<<*dmrginp.initnewsystem<<" "<<*dmrginp.sysdotmake<<" "<<*dmrginp.buildcsfops<<" makeops "<<endl;
p2out << *dmrginp.datatransfer<<" datatransfer "<<endl;
p2out <<"oneindexopmult twoindexopmult Hc couplingcoeff"<<endl;
p2out << *dmrginp.oneelecT<<" "<<*dmrginp.twoelecT<<" "<<*dmrginp.hmultiply<<" "<<*dmrginp.couplingcoeff<<" hmult"<<endl;
p2out << *dmrginp.buildsumblock<<" "<<*dmrginp.buildblockops<<" build block"<<endl;
p2out << *dmrginp.blockintegrals<<" "<<*dmrginp.blocksites<<" "<<*dmrginp.statetensorproduct<<" "<<*dmrginp.statecollectquanta<<" "<<*dmrginp.buildsumblock<<" "<<*dmrginp.builditeratorsT<<" "<<*dmrginp.diskio<<" build sum block"<<endl;
p2out << "addnoise S_0_opxop S_1_opxop S_2_opxop"<<endl;
p3out << *dmrginp.addnoise<<" "<<*dmrginp.s0time<<" "<<*dmrginp.s1time<<" "<<*dmrginp.s2time<<endl;
}
示例10: InitializeOverlapSpinBlocks
//before you start optimizing each state you want to initalize all the overlap matrices
void Sweep::InitializeOverlapSpinBlocks(SweepParams &sweepParams, const bool &forward, int stateA, int stateB)
{
SpinBlock system;
sweepParams.set_sweep_parameters();
if (forward)
pout << "\t\t\t Starting sweep "<< sweepParams.set_sweep_iter()<<" in forwards direction"<<endl;
else
pout << "\t\t\t Starting sweep "<< sweepParams.set_sweep_iter()<<" in backwards direction" << endl;
pout << "\t\t\t ============================================================================ " << endl;
int restartSize = 0; bool restart = false, warmUp = false;
InitBlocks::InitStartingBlock (system,forward, stateA, stateB, sweepParams.get_forward_starting_size(), sweepParams.get_backward_starting_size(), restartSize, restart, warmUp);
sweepParams.set_block_iter() = 0;
if (dmrginp.outputlevel() > 0)
pout << "\t\t\t Starting block is :: " << endl << system << endl;
SpinBlock::store (forward, system.get_sites(), system, stateA, stateB); // if restart, just restoring an existing block --
sweepParams.savestate(forward, system.get_sites().size());
bool dot_with_sys = true;
vector<int> syssites = system.get_sites();
if (dmrginp.outputlevel() > 0)
mcheck("at the very start of sweep"); // just timer
for (; sweepParams.get_block_iter() < sweepParams.get_n_iters(); ) // get_n_iters() returns the number of blocking iterations needed in one sweep
{
pout << "\t\t\t Block Iteration :: " << sweepParams.get_block_iter() << endl;
pout << "\t\t\t ----------------------------" << endl;
if (dmrginp.outputlevel() > 0) {
if (forward) pout << "\t\t\t Current direction is :: Forwards " << endl;
else pout << "\t\t\t Current direction is :: Backwards " << endl;
}
SpinBlock systemDot, environmentDot;
int systemDotStart, systemDotEnd;
int systemDotSize = sweepParams.get_sys_add() - 1;
if (forward)
{
systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
systemDotEnd = systemDotStart + systemDotSize;
}
else
{
systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
systemDotEnd = systemDotStart - systemDotSize;
}
systemDot = SpinBlock(systemDotStart, systemDotEnd, true);
SpinBlock newSystem; // new system after blocking and decimating
newSystem.initialise_op_array(OVERLAP, false);
newSystem.setstoragetype(DISTRIBUTED_STORAGE);
newSystem.BuildSumBlock (NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, system, systemDot);
std::vector<Matrix> brarotateMatrix, ketrotateMatrix;
LoadRotationMatrix(newSystem.get_sites(), brarotateMatrix, stateA);
LoadRotationMatrix(newSystem.get_sites(), ketrotateMatrix, stateB);
newSystem.transform_operators(brarotateMatrix, ketrotateMatrix);
system = newSystem;
if (dmrginp.outputlevel() > 0){
pout << system<<endl;
}
SpinBlock::store (forward, system.get_sites(), system, stateA, stateB);
++sweepParams.set_block_iter();
sweepParams.savestate(forward, syssites.size());
if (dmrginp.outputlevel() > 0)
mcheck("at the end of sweep iteration");
}
pout << "\t\t\t ============================================================================ " << endl;
// update the static number of iterations
return ;
}
示例11: dmrg_stateSpecific
void dmrg_stateSpecific(double sweep_tol, int targetState)
{
double last_fe = 10.e6;
double last_be = 10.e6;
double old_fe = 0.;
double old_be = 0.;
int ls_count=0;
SweepParams sweepParams;
int old_states=sweepParams.get_keep_states();
int new_states;
double old_error=0.0;
double old_energy=0.0;
// warm up sweep ...
bool direction;
int restartsize;
sweepParams.restorestate(direction, restartsize);
//initialize array of size m_maxiter or dmrginp.max_iter() for dw and energy
sweepParams.current_root() = targetState;
last_fe = Sweep::do_one(sweepParams, false, direction, true, restartsize);
while ((fabs(last_fe - old_fe) > sweep_tol) || (fabs(last_be - old_be) > sweep_tol) )
{
old_fe = last_fe;
old_be = last_be;
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
break;
last_be = Sweep::do_one(sweepParams, false, !direction, false, 0);
pout << "\t\t\t Finished Sweep Iteration "<<sweepParams.get_sweep_iter()<<endl;
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
break;
last_fe = Sweep::do_one(sweepParams, false, direction, false, 0);
new_states=sweepParams.get_keep_states();
pout << "\t\t\t Finished Sweep Iteration "<<sweepParams.get_sweep_iter()<<endl;
}
pout << "Converged Energy " << sweepParams.get_lowest_energy()[0]<< std::endl;
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter()) {
pout << "Maximum sweep iterations achieved " << std::endl;
}
//one has to canonicalize the wavefunction with atleast 3 sweeps, this is a quirk of the way
//we transform wavefunction
if (mpigetrank()==0) {
Sweep::InitializeStateInfo(sweepParams, !direction, targetState);
Sweep::InitializeStateInfo(sweepParams, direction, targetState);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, targetState);
Sweep::CanonicalizeWavefunction(sweepParams, direction, targetState);
Sweep::CanonicalizeWavefunction(sweepParams, !direction, targetState);
Sweep::InitializeStateInfo(sweepParams, !direction, targetState);
Sweep::InitializeStateInfo(sweepParams, direction, targetState);
}
}
示例12: dotSystem
void SpinAdapted::mps_nevpt::type1::Startup(const SweepParams &sweepParams, const bool &forward, perturber& pb, int baseState) {
#ifndef SERIAL
mpi::communicator world;
#endif
assert(forward);
SpinBlock system;
system.nonactive_orb() =pb.orb();
bool restart=false, warmUp = false;
int forward_starting_size=1, backward_starting_size=0, restartSize =0;
InitBlocks::InitStartingBlock(system, forward, pb.wavenumber(), baseState, forward_starting_size, backward_starting_size, restartSize, restart, warmUp, 0,pb.braquanta, pb.ketquanta);
SpinBlock::store (forward, system.get_sites(), system, pb.wavenumber(), baseState); // if restart, just restoring an existing block --
for (int i=0; i<mps_nevpt::sweepIters; i++) {
SpinBlock newSystem;
SpinBlock dotSystem(i+1,i+1,pb.orb(),false);
system.addAdditionalCompOps();
//newSystem.default_op_components(true, system, dotSystem, true, true, false);
newSystem.perturb_op_components(false, system, dotSystem, pb);
newSystem.setstoragetype(DISTRIBUTED_STORAGE);
newSystem.BuildSumBlock(LessThanQ, system, dotSystem, pb.braquanta, pb.ketquanta);
newSystem.printOperatorSummary();
//SpinBlock Environment, big;
//SpinBlock::restore (!forward, newSystem.get_complementary_sites() , Environment, baseState, baseState);
//TODO
//SpinBlock::restore (!forward, newSystem.get_complementary_sites() , Environment,sweepParams.current_root(),sweepParams.current_root());
//big.BuildSumBlock(PARTICLE_SPIN_NUMBER_CONSTRAINT, newSystem, Environment, pb.braquanta, pb.ketquanta);
//StateInfo envStateInfo;
StateInfo ketStateInfo;
StateInfo braStateInfo;
StateInfo halfbraStateInfo;// It has the same left and right StateInfo as braStateInfo. However, its total quanta is pb.ketquanta.
// It is used to project solution into to braStateInfo.
std::vector<Wavefunction> solution; solution.resize(1);
std::vector<Wavefunction> outputState; outputState.resize(1);
std::vector<Wavefunction> solutionprojector; solutionprojector.resize(1);
solution[0].LoadWavefunctionInfo(ketStateInfo, newSystem.get_sites(), baseState);
#ifndef SERIAL
broadcast(world, ketStateInfo, 0);
broadcast(world, solution, 0);
#endif
outputState[0].AllowQuantaFor(newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta);
outputState[0].set_onedot(solution[0].get_onedot());
outputState[0].Clear();
solutionprojector[0].AllowQuantaFor(newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.ketquanta);
solutionprojector[0].set_onedot(solution[0].get_onedot());
solutionprojector[0].Clear();
//TensorProduct (newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta[0], EqualQ, braStateInfo);
//TODO
//TensorProduct do not support const StateInfo&
TensorProduct (newSystem.set_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta[0], EqualQ, braStateInfo);
TensorProduct (newSystem.set_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.ketquanta[0], EqualQ, halfbraStateInfo);
//StateInfo::restore(forward, environmentsites, envStateInfo, baseState);
//DiagonalMatrix e;
//if(i == 0)
// GuessWave::guess_wavefunctions(solution, e, big, TRANSPOSE, true, true, 0.0, baseState);
//else
// GuessWave::guess_wavefunctions(solution, e, big, TRANSFORM, true, true, 0.0, baseState);
//SpinAdapted::operatorfunctions::Product(&newSystem, ccd, solution[0], &ketStateInfo, stateb.getw(), temp, SpinQuantum(0, SpinSpace(0), IrrepSpace(0)), true, 1.0);
boost::shared_ptr<SparseMatrix> O;
if (pb.type() == TwoPerturbType::Va)
O = newSystem.get_op_array(CDD_SUM).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
if (pb.type() == TwoPerturbType::Vi)
O = newSystem.get_op_array(CCD_SUM).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
boost::shared_ptr<SparseMatrix> overlap = newSystem.get_op_array(OVERLAP).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
SpinAdapted::operatorfunctions::TensorMultiply(*O, &braStateInfo, &ketStateInfo , solution[0], outputState[0], pb.delta, true, 1.0);
SpinAdapted::operatorfunctions::TensorMultiply(*overlap, &halfbraStateInfo, &ketStateInfo , solution[0], solutionprojector[0], overlap->get_deltaQuantum(0), true, 1.0);
DensityMatrix bratracedMatrix(newSystem.get_braStateInfo());
bratracedMatrix.allocate(newSystem.get_braStateInfo());
double norm = DotProduct(outputState[0], outputState[0]);
if(norm > NUMERICAL_ZERO)
SpinAdapted::operatorfunctions::MultiplyProduct(outputState[0], Transpose(const_cast<Wavefunction&> (outputState[0])), bratracedMatrix, 0.5/norm);
SpinAdapted::operatorfunctions::MultiplyProduct(solutionprojector[0], Transpose(const_cast<Wavefunction&> (solutionprojector[0])), bratracedMatrix, 0.5);
std::vector<Matrix> brarotateMatrix, ketrotateMatrix;
LoadRotationMatrix (newSystem.get_sites(), ketrotateMatrix, baseState);
double error;
if (!mpigetrank())
error = makeRotateMatrix(bratracedMatrix, brarotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
#ifndef SERIAL
broadcast(world, ketrotateMatrix, 0);
broadcast(world, brarotateMatrix, 0);
#endif
SaveRotationMatrix (newSystem.get_sites(), brarotateMatrix, pb.wavenumber());
newSystem.transform_operators(brarotateMatrix,ketrotateMatrix);
SpinBlock::store (forward, newSystem.get_sites(), newSystem, pb.wavenumber(), baseState); // if restart, just restoring an existing block --
system=newSystem;
}
//TODO
//.........这里部分代码省略.........
示例13: pbmps
void SpinAdapted::mps_nevpt::type1::subspace_Va(int baseState)
{
double energy=0;
double overlap=0;
VaPerturber pb;
MPS::siteBlocks.clear();
int virtsize = dmrginp.spinAdapted()? dmrginp.virt_size():dmrginp.virt_size()*2;
int virtshift = dmrginp.spinAdapted()? dmrginp.core_size()+dmrginp.act_size(): (dmrginp.core_size()+dmrginp.act_size())*2;
//int virtsize = dmrginp.virt_size();
//int virtshift = dmrginp.core_size()+dmrginp.act_size();
for(int i=0; i< virtsize; i++){
double perturberEnergy=0;
dmrginp.calc_type() = MPS_NEVPT;
pb.init(i+virtshift);
pout << "Begin Va subspace with a = " << pb.orb(0)<<endl;
SweepParams sweepParams;
sweepParams.set_sweep_parameters();
sweepParams.current_root() = baseState;
//sweepParams.current_root() = -1;
//double last_fe = Startup(sweepParams, true, true, false, 0, pb, baseState);
Timer timer;
Startup(sweepParams, true, pb, baseState);
pout <<"Start up time :" << timer.elapsedwalltime();
//sweepParams.current_root() = baseState;
timer.start();
while(true)
{
do_one(sweepParams, false, false, false, 0, pb, baseState);
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
break;
do_one(sweepParams, false, true, false, 0, pb, baseState);
if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
{
cleanup(baseState, pb);
break;
}
}
pout <<"Sweep time :" << timer.elapsedwalltime();
// while ( true)
// {
// old_fe = last_fe;
// old_be = last_be;
// if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
// break;
// last_be = do_one(sweepParams, false, false, false, 0, pb, baseState);
// if (dmrginp.outputlevel() > 0)
// pout << "Finished Sweep Iteration "<<sweepParams.get_sweep_iter()<<endl;
//
// if(dmrginp.max_iter() <= sweepParams.get_sweep_iter())
// break;
//
// last_fe = do_one(sweepParams, false, true, false, 0, pb, baseState);
//
// if (dmrginp.outputlevel() > 0)
// pout << "Finished Sweep Iteration "<<sweepParams.get_sweep_iter()<<endl;
//
// }
//
// if (mpigetrank()==0) {
// bool direction = true;
// Sweep::InitializeStateInfo(sweepParams, !direction, pb.wavenumber(),pb.braquanta );
// Sweep::InitializeStateInfo(sweepParams, direction, pb.wavenumber(),pb.braquanta );
// Sweep::CanonicalizeWavefunction(sweepParams, !direction, pb.wavenumber(),pb.braquanta );
// Sweep::CanonicalizeWavefunction(sweepParams, direction, pb.wavenumber(),pb.braquanta );
// Sweep::CanonicalizeWavefunction(sweepParams, !direction, pb.wavenumber(),pb.braquanta );
// Sweep::InitializeStateInfo(sweepParams, !direction, pb.wavenumber(),pb.braquanta );
// Sweep::InitializeStateInfo(sweepParams, direction, pb.wavenumber(),pb.braquanta );
//
// }
MPS pbmps(pb.wavenumber());
double o, h;
dmrginp.calc_type() = DMRG;
timer.start();
calcHamiltonianAndOverlap(pbmps, h, o,pb);
pout <<"Calculate Expectation time :" << timer.elapsedwalltime();
if(!dmrginp.spinAdapted())
{
//In nonspinAdapted, alpha and beta have the results. Only one is neccessary.
o*=2;
h*=2;
i++;
}
if(o> NUMERICAL_ZERO){
double fock =dmrginp.spinAdapted()? v_1[0](2*(i+virtshift),2*(i+virtshift)): v_1[0](i+virtshift,i+virtshift);
//perturberEnergy = h/o+fock+perturber::CoreEnergy[0];
perturberEnergy = h/o+fock;
energy += o/(mps_nevpt::ZeroEnergy[baseState]- perturberEnergy) ;
//overlap +=o;
overlap += sqrt(o)/(mps_nevpt::ZeroEnergy[baseState]- perturberEnergy);
if (dmrginp.outputlevel() > 0){
pout << "Amplitude : " << sqrt(o)/(mps_nevpt::ZeroEnergy[baseState]- perturberEnergy) <<endl;
pout << "Ener(only CAS part) : " << h/o<<endl;
pout << "Energy : " << perturberEnergy<<endl;
//.........这里部分代码省略.........
示例14: finalEnergy
double SpinAdapted::mps_nevpt::type1::do_one(SweepParams &sweepParams, const bool &warmUp, const bool &forward, const bool &restart, const int &restartSize, perturber& pb, int baseState)
{
int integralIndex = 0;
SpinBlock system;
system.nonactive_orb() = pb.orb();
const int nroots = dmrginp.nroots(sweepParams.get_sweep_iter());
std::vector<double> finalEnergy(nroots,-1.0e10);
std::vector<double> finalEnergy_spins(nroots,0.);
double finalError = 0.;
sweepParams.set_sweep_parameters();
// a new renormalisation sweep routine
if (forward)
if (dmrginp.outputlevel() > 0)
pout << "\t\t\t Starting sweep "<< sweepParams.set_sweep_iter()<<" in forwards direction"<<endl;
else
if (dmrginp.outputlevel() > 0)
{
pout << "\t\t\t Starting sweep "<< sweepParams.set_sweep_iter()<<" in backwards direction" << endl;
pout << "\t\t\t ============================================================================ " << endl;
}
InitBlocks::InitStartingBlock (system,forward, baseState, pb.wavenumber(), sweepParams.get_forward_starting_size(), sweepParams.get_backward_starting_size(), restartSize, restart, warmUp, integralIndex, pb.braquanta, pb.ketquanta);
if(!restart)
sweepParams.set_block_iter() = 0;
if (dmrginp.outputlevel() > 0)
pout << "\t\t\t Starting block is :: " << endl << system << endl;
SpinBlock::store (forward, system.get_sites(), system, pb.wavenumber(), baseState); // if restart, just restoring an existing block --
sweepParams.savestate(forward, system.get_sites().size());
bool dot_with_sys = true;
vector<int> syssites = system.get_sites();
if (restart)
{
if (forward && system.get_complementary_sites()[0] >= dmrginp.last_site()/2)
dot_with_sys = false;
if (!forward && system.get_sites()[0]-1 < dmrginp.last_site()/2)
dot_with_sys = false;
}
if (dmrginp.outputlevel() > 0)
mcheck("at the very start of sweep"); // just timer
for (; sweepParams.get_block_iter() < sweepParams.get_n_iters(); ) // get_n_iters() returns the number of blocking iterations needed in one sweep
{
if (dmrginp.outputlevel() > 0)
{
pout << "\t\t\t Block Iteration :: " << sweepParams.get_block_iter() << endl;
pout << "\t\t\t ----------------------------" << endl;
}
if (dmrginp.outputlevel() > 0) {
if (forward)
{
pout << "\t\t\t Current direction is :: Forwards " << endl;
}
else
{
pout << "\t\t\t Current direction is :: Backwards " << endl;
}
}
if (sweepParams.get_block_iter() != 0)
sweepParams.set_guesstype() = TRANSFORM;
else
sweepParams.set_guesstype() = TRANSPOSE;
if (dmrginp.outputlevel() > 0)
pout << "\t\t\t Blocking and Decimating " << endl;
SpinBlock newSystem; // new system after blocking and decimating
newSystem.nonactive_orb() = pb.orb();
//Need to substitute by:
// if (warmUp )
// Startup(sweepParams, system, newSystem, dot_with_sys, pb.wavenumber(), baseState);
// else {
// BlockDecimateAndCompress (sweepParams, system, newSystem, false, dot_with_sys, pb.wavenumber(), baseState);
// }
BlockDecimateAndCompress (sweepParams, system, newSystem, warmUp, dot_with_sys,pb, baseState);
//Need to substitute by?
system = newSystem;
if (dmrginp.outputlevel() > 0){
pout << system<<endl;
pout << system.get_braStateInfo()<<endl;
system.printOperatorSummary();
}
//system size is going to be less than environment size
if (forward && system.get_complementary_sites()[0] >= dmrginp.last_site()/2)
dot_with_sys = false;
if (!forward && system.get_sites()[0]-1 < dmrginp.last_site()/2)
dot_with_sys = false;
//.........这里部分代码省略.........
示例15: bratracedMatrix
void SpinAdapted::mps_nevpt::type1::BlockDecimateAndCompress (SweepParams &sweepParams, SpinBlock& system, SpinBlock& newSystem, const bool &useSlater, const bool& dot_with_sys, perturber& pb, int baseState)
{
int sweepiter = sweepParams.get_sweep_iter();
if (dmrginp.outputlevel() > 0) {
mcheck("at the start of block and decimate");
pout << "\t\t\t dot with system "<<dot_with_sys<<endl;
pout <<endl<< "\t\t\t Performing Blocking"<<endl;
}
// figure out if we are going forward or backwards
dmrginp.guessgenT -> start();
bool forward = (system.get_sites() [0] == 0);
SpinBlock systemDot;
SpinBlock environment, environmentDot, newEnvironment;
SpinBlock big;
environment.nonactive_orb() = pb.orb();
newEnvironment.nonactive_orb() = pb.orb();
int systemDotStart, systemDotEnd;
int environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;
int systemDotSize = sweepParams.get_sys_add() - 1;
int environmentDotSize = sweepParams.get_env_add() -1;
if (forward)
{
systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
systemDotEnd = systemDotStart + systemDotSize;
environmentDotStart = systemDotEnd + 1;
environmentDotEnd = environmentDotStart + environmentDotSize;
}
else
{
systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
systemDotEnd = systemDotStart - systemDotSize;
environmentDotStart = systemDotEnd - 1;
environmentDotEnd = environmentDotStart - environmentDotSize;
}
systemDot = SpinBlock(systemDotStart, systemDotEnd, pb.orb());
environmentDot = SpinBlock(environmentDotStart, environmentDotEnd, pb.orb());
Sweep::makeSystemEnvironmentBigBlocks(system, systemDot, newSystem, environment, environmentDot, newEnvironment, big, sweepParams, dot_with_sys, useSlater, system.get_integralIndex(), pb.wavenumber(), baseState,pb.braquanta,pb.ketquanta);
//analyse_operator_distribution(big);
dmrginp.guessgenT -> stop();
dmrginp.multiplierT -> start();
std::vector<Matrix> rotatematrix;
if (dmrginp.outputlevel() > 0)
mcheck("");
if (dmrginp.outputlevel() > 0) {
if (!dot_with_sys && sweepParams.get_onedot()) { pout << "\t\t\t System Block"<<system; }
else pout << "\t\t\t System Block"<<newSystem;
pout << "\t\t\t Environment Block"<<newEnvironment<<endl;
pout << "\t\t\t Solving wavefunction "<<endl;
}
std::vector<Wavefunction> solution; solution.resize(1);
std::vector<Wavefunction> outputState; outputState.resize(1);
DiagonalMatrix e;
//read the 0th wavefunction which we keep on the ket side because by default the ket stateinfo is used to initialize wavefunction
//also when you use spinblock operators to multiply a state, it does so from the ket side i.e. H|ket>
//GuessWave::guess_wavefunctions(solution, e, big, sweepParams.set_guesstype(), sweepParams.get_onedot(), dot_with_sys, 0.0, baseState);
GuessWave::guess_wavefunctions(solution[0], e, big, sweepParams.set_guesstype(), sweepParams.get_onedot(), baseState, dot_with_sys, 0.0);
#ifndef SERIAL
mpi::communicator world;
broadcast(world, solution, 0);
#endif
outputState[0].AllowQuantaFor(big.get_leftBlock()->get_braStateInfo(), big.get_rightBlock()->get_braStateInfo(),pb.braquanta);
outputState[0].set_onedot(sweepParams.get_onedot());
outputState[0].Clear();
if (pb.type() == TwoPerturbType::Va)
big.multiplyCDD_sum(solution[0],&(outputState[0]),MAX_THRD);
if (pb.type() == TwoPerturbType::Vi)
big.multiplyCCD_sum(solution[0],&(outputState[0]),MAX_THRD);
//davidson_f(solution[0], outputState[0]);
SpinBlock newbig;
if (sweepParams.get_onedot() && !dot_with_sys)
{
InitBlocks::InitNewSystemBlock(system, systemDot, newSystem, baseState, pb.wavenumber(), systemDot.size(), dmrginp.direct(), system.get_integralIndex(), DISTRIBUTED_STORAGE, false, true,NO_PARTICLE_SPIN_NUMBER_CONSTRAINT,pb.braquanta,pb.ketquanta);
InitBlocks::InitBigBlock(newSystem, environment, newbig,pb.braquanta,pb.ketquanta);
Wavefunction tempwave = outputState[0];
GuessWave::onedot_shufflesysdot(big.get_braStateInfo(), newbig.get_braStateInfo(), outputState[0], tempwave);
outputState[0] = tempwave;
tempwave = solution[0];
GuessWave::onedot_shufflesysdot(big.get_ketStateInfo(), newbig.get_ketStateInfo(), solution[0], tempwave);
solution[0] = tempwave;
big.get_rightBlock()->clear();
big.clear();
}
else
newbig = big;
//.........这里部分代码省略.........