本文整理汇总了C++中StructuralMaterial::giveThermalDilatationVector方法的典型用法代码示例。如果您正苦于以下问题:C++ StructuralMaterial::giveThermalDilatationVector方法的具体用法?C++ StructuralMaterial::giveThermalDilatationVector怎么用?C++ StructuralMaterial::giveThermalDilatationVector使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类StructuralMaterial
的用法示例。
在下文中一共展示了StructuralMaterial::giveThermalDilatationVector方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: response
void
SimpleCrossSection :: giveGeneralizedStress_Beam2d(FloatArray &answer, GaussPoint *gp, const FloatArray &strain, TimeStep *tStep)
{
/**Note: (by bp): This assumes that the behaviour is elastic
there exist a nuumber of nonlinear integral material models for beams defined directly in terms of integral forces and moments and corresponding
deformations and curvatures. This would require to implement support at material model level.
Mikael: That would not be a continuum material model, but it would highly depend on the cross-section shape, thus, it should be a special cross-section model instead.
This cross-section assumes you can split the response into inertia moments and pure material response. This is only possible for a constant, elastic response (i.e. elastic).
Therefore, this cross-section may only be allowed to give the elastic response.
*/
StructuralMaterial *mat = static_cast< StructuralMaterial * >( this->giveMaterial(gp) );
FloatArray elasticStrain, et, e0;
FloatMatrix tangent;
elasticStrain = strain;
this->giveTemperatureVector(et, gp, tStep);
if ( et.giveSize() > 0 ) {
mat->giveThermalDilatationVector(e0, gp, tStep);
double thick = this->give(CS_Thickness, gp);
elasticStrain.at(1) -= e0.at(1) * ( et.at(1) - mat->giveReferenceTemperature() );
if ( et.giveSize() > 1 ) {
elasticStrain.at(2) -= e0.at(1) * et.at(2) / thick; // kappa_x
}
}
this->give2dBeamStiffMtrx(tangent, ElasticStiffness, gp, tStep);
answer.beProductOf(tangent, elasticStrain);
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( mat->giveStatus(gp) );
status->letTempStrainVectorBe(strain);
status->letTempStressVectorBe(answer);
}
示例2:
void
SimpleCrossSection :: giveGeneralizedStress_Shell(FloatArray &answer, GaussPoint *gp, const FloatArray &strain, TimeStep *tStep)
{
/**Note: (by bp): This assumes that the behaviour is elastic
there exist a nuumber of nonlinear integral material models for beams/plates/shells
defined directly in terms of integral forces and moments and corresponding
deformations and curvatures. This would require to implement support at material model level.
Mikael: See earlier response to comment
*/
StructuralMaterial *mat = static_cast< StructuralMaterial * >( this->giveMaterial(gp) );
FloatArray elasticStrain, et, e0;
FloatMatrix tangent;
elasticStrain = strain;
this->giveTemperatureVector(et, gp, tStep);
if ( et.giveSize() ) {
double thick = this->give(CS_Thickness, gp);
mat->giveThermalDilatationVector(e0, gp, tStep);
elasticStrain.at(1) -= e0.at(1) * ( et.at(1) - mat->giveReferenceTemperature() );
elasticStrain.at(2) -= e0.at(2) * ( et.at(1) - mat->giveReferenceTemperature() );
if ( et.giveSize() > 1 ) {
elasticStrain.at(4) -= e0.at(1) * et.at(2) / thick; // kappa_x
elasticStrain.at(5) -= e0.at(2) * et.at(2) / thick; // kappa_y
}
}
this->give3dShellStiffMtrx(tangent, ElasticStiffness, gp, tStep);
answer.beProductOf(tangent, elasticStrain);
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( mat->giveStatus(gp) );
status->letTempStrainVectorBe(strain);
status->letTempStressVectorBe(answer);
}
示例3: computeStressIndependentStrainVector
void
SimpleCrossSection :: computeStressIndependentStrainVector(FloatArray &answer,
GaussPoint *gp, TimeStep *stepN, ValueModeType mode)
//
// returns initial strain vector induced by stress independent effects
// like temperatue or shrinkage.
// takes into account form of load vector assumed by engngModel (Incremental or Total Load form).
//
{
StructuralMaterial *mat = ( StructuralMaterial * ) gp->giveElement()->giveMaterial();
///@todo Deprecated or not? If so, remove it! / Mikael
#if 0
MaterialMode matmode = gp-> giveMaterialMode ();
FloatArray et, e0, fullAnswer;
double thick, width;
if ((matmode == _2dBeam) || (matmode == _3dBeam) || (matmode == _3dShell) || (matmode == _2dPlate)) {
StructuralElement *elem = (StructuralElement*)gp->giveElement();
elem -> computeResultingIPTemperatureAt (et, stepN, gp, mode);
FloatArray redAnswer;
if (et.giveSize() == 0) {answer.resize(0); return ;}
if (et.giveSize() < 1) {
_error ("computeStressIndependentStrainVector - Bad format of TemperatureLoad");
exit (1);
}
mat->giveThermalDilatationVector (e0, gp,stepN);
if (matmode == _2dBeam) {
answer.resize (3);
answer.zero();
answer.at(1) = e0.at(1) * (et.at(1)- mat->giveReferenceTemperature());
if (et.giveSize() > 1) {
thick = this->give(THICKNESS);
answer.at(2) = e0.at(1) * et.at(2)/ thick; // kappa_x
}
} else if (matmode == _3dBeam) {
answer.resize (6);
answer.zero();
answer.at(1) = e0.at(1) * (et.at(1)- mat->giveReferenceTemperature());
if (et.giveSize() > 1) {
thick = this->give(THICKNESS);
width = this->give(WIDTH);
answer.at(5) = e0.at(1) * et.at(2)/ thick; // kappa_y
if (et.giveSize() > 2)
answer.at(6) = e0.at(1) * et.at(3)/ width; // kappa_z
}
} else if (matmode == _2dPlate) {
if (et.giveSize() > 1) {
answer.resize (5);
answer.zero();
thick = this->give(THICKNESS);
if (et.giveSize() > 1) {
answer.at(1) = e0.at(1) * et.at(2)/ thick; // kappa_x
answer.at(2) = e0.at(2) * et.at(2)/ thick; // kappa_y
}
}
} else if (matmode == _3dShell) {
answer.resize (8);
answer.zero();
answer.at(1) = e0.at(1) * (et.at(1)- mat->giveReferenceTemperature());
answer.at(2) = e0.at(2) * (et.at(1)- mat->giveReferenceTemperature());
if (et.giveSize() > 1) {
thick = this->give(THICKNESS);
answer.at(4) = e0.at(1) * et.at(2)/ thick; // kappa_x
answer.at(5) = e0.at(2) * et.at(2)/ thick; // kappa_y
}
} else _error ("Unsupported material mode");
} else {
mat->computeStressIndependentStrainVector (answer, gp, stepN, mode);
}
#endif
mat->computeStressIndependentStrainVector(answer, gp, stepN, mode);
}