当前位置: 首页>>代码示例>>C++>>正文


C++ StateP类代码示例

本文整理汇总了C++中StateP的典型用法代码示例。如果您正苦于以下问题:C++ StateP类的具体用法?C++ StateP怎么用?C++ StateP使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了StateP类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: onlookerBeesPhase

bool ArtificialBeeColony::onlookerBeesPhase(StateP state, DemeP deme)
{
// jednostavni odabir, uz selFitPropOp
/*	for( uint i = 0; i < deme->getSize(); i++ ) { // for each food source
		// choose a food source depending on its fitness value (better individuals are more likely to be chosen)
		IndividualP food = selFitOp->select(*deme);
		createNewFoodSource(food, state, deme);
	}
*/


// uz vjerojatnosti, jedinka po jedinka
	calculateProbabilities(state, deme);
	int demeSize = deme->getSize();
	int i = state->getRandomizer()->getRandomInteger(demeSize);
	int n = 0;
	while( n < demeSize) {
		int fact = i++ % demeSize;
		IndividualP food = deme->at(fact);
		
		if (state->getRandomizer()->getRandomDouble() < probability_[fact]){
			n++;
			createNewFoodSource(food, state, deme);
		}			
	}

	return true;
}
开发者ID:llamallamaduck,项目名称:GP-crossover,代码行数:28,代码来源:AlgArtificialBeeColony.cpp

示例2: initialize

		bool initialize(StateP state)
		{		
			voidP lBound = state->getGenotypes()[0]->getParameterValue(state, "lbound");
			lbound = *((double*) lBound.get());

			voidP uBound = state->getGenotypes()[0]->getParameterValue(state, "ubound");
			ubound = *((double*) uBound.get());

			voidP dimension_ = state->getGenotypes()[0]->getParameterValue(state, "dimension");
			dimension = *((uint*) dimension_.get());

			voidP dup_ = getParameterValue(state, "dup");
			dup = *((uint*) dup_.get());
			if( *((int*) dup_.get()) <= 0 ) {
				ECF_LOG(state, 1, "Error: opt-IA requires parameter 'dup' to be an integer greater than 0");
				throw "";}

			voidP c_ = getParameterValue(state, "c");
			c = *((double*) c_.get());
			if( c <= 0 ) {
				ECF_LOG(state, 1, "Error: opt-IA requires parameter 'c' to be a double greater than 0");
				throw "";}

			voidP tauB_ = getParameterValue(state, "tauB");
			tauB = *((double*) tauB_.get());
			if( tauB < 0 ) {
				ECF_LOG(state, 1, "Error: opt-IA requires parameter 'tauB' to be a nonnegative double value");
				throw "";}

			voidP elitism_ = getParameterValue(state, "elitism");
			elitism = *((string*) elitism_.get());
			if( elitism != "true" && elitism != "false"  ) {
				ECF_LOG(state, 1,  "Error: opt-IA requires parameter 'elitism' to be either 'true' or 'false'");
				throw "";}


			// algorithm accepts a single FloatingPoint Genotype
			FloatingPointP flp (new FloatingPoint::FloatingPoint);
			if(state->getGenotypes()[0]->getName() != flp->getName()) {
				ECF_LOG_ERROR(state, "Error: opt-IA algorithm accepts only a FloatingPoint genotype!");
				throw ("");}

			// algorithm adds another FloatingPoint genotype (age)
			FloatingPointP flpoint[2];
			for(uint iGen = 1; iGen < 2; iGen++) {
				flpoint[iGen] = (FloatingPointP) new FloatingPoint::FloatingPoint;
				state->setGenotype(flpoint[iGen]);

				flpoint[iGen]->setParameterValue(state, "dimension", (voidP) new uint(1));					

				// initial value of age parameter should be (or as close as possible to) 0				
				flpoint[iGen]->setParameterValue(state, "lbound", (voidP) new double(0));
				flpoint[iGen]->setParameterValue(state, "ubound", (voidP) new double(0.01));
				
			}
			ECF_LOG(state, 1, "opt-IA algorithm: added 1 FloatingPoint genotype (antibody age)");
			
            return true;
		}
开发者ID:alojzije,项目名称:old_ECF_algVisualization,代码行数:59,代码来源:main.cpp

示例3: registerParameters

/**
 * \brief Register mutation related but Genotype unrelated parameters
 */
void Mutation::registerParameters(StateP state)
{
	state->getRegistry()->registerEntry("mutation.indprob", (voidP) new double(0.3), ECF::DOUBLE,
		"individual mutation probability (unless the algorithm overrides it) (default: 0.3)");
//	state->getRegistry()->registerEntry("mutation.geneprob", (voidP) new double(0.01), ECF::DOUBLE);
	state->getRegistry()->registerEntry("mutation.genotypes", (voidP) new std::string("random"), ECF::STRING,
		"if there are multiple genotypes, which to mutate? 'random': a random one, all: mutate all (default: random)");
	state->getRegistry()->registerEntry("mutation.protected", (voidP) new std::string(""), ECF::STRING,
		"indexes of genotypes (separated by spaces) that are excluded (protected) from mutation (default: none)");
}
开发者ID:icoric4,项目名称:Zagreb-Metro,代码行数:13,代码来源:Mutation.cpp

示例4: operate

bool TermStagnationOp::operate(StateP state)
{
	uint currentGen = state->getGenerationNo();
	if(currentGen - state->getPopulation()->getHof()->getLastChange() > termStagnation_) {
		state->setTerminateCond();
		ECF_LOG(state, 1, "Termination: maximum number of generations without improvement ("
			+ uint2str(termStagnation_) + ") reached");
	}

	return true;
}
开发者ID:icoric4,项目名称:Zagreb-Metro,代码行数:11,代码来源:TermStagnationOp.cpp

示例5: registerParameters

void RegEvalOp::registerParameters(StateP state) {

    state->getRegistry()->registerEntry("inputfile", (voidP)(new std::string("learning.txt")), ECF::STRING);

    state->getRegistry()->registerEntry("testfile", (voidP)(new std::string("test.txt")), ECF::STRING);

    state->getRegistry()->registerEntry("classesfile", (voidP)(new std::string("classes.txt")), ECF::STRING);

    state->getRegistry()->registerEntry("resultsfile", (voidP)(new std::string("results.txt")), ECF::STRING);

    state->getRegistry()->registerEntry("classesNum", (voidP)(new uint(2)), ECF::UINT);
}
开发者ID:IvanVlasic,项目名称:ZavrsniRad,代码行数:12,代码来源:RegEvalOp.cpp

示例6: initialize

bool ArtificialBeeColony::initialize(StateP state)
{
	// initialize all operators
	selFitOp->initialize(state);
	selFitOp->setSelPressure(2);
	selBestOp->initialize(state);
	selWorstOp->initialize(state);
	selRandomOp->initialize(state);

	voidP sptr = state->getRegistry()->getEntry("population.size");
	uint size = *((uint*) sptr.get());
	probability_.resize(size);

	// this algorithm accepts a single FloatingPoint Genotype
	FloatingPointP flp (new FloatingPoint::FloatingPoint);
	if(state->getGenotypes()[0]->getName() != flp->getName()) {
		ECF_LOG_ERROR(state, "Error: ABC algorithm accepts only a single FloatingPoint genotype!");
		throw ("");
	}

	voidP limitp = getParameterValue(state, "limit");
	limit_ = *((uint*) limitp.get());

	voidP lBound = state->getGenotypes()[0]->getParameterValue(state, "lbound");
	lbound_ = *((double*) lBound.get());
	voidP uBound = state->getGenotypes()[0]->getParameterValue(state, "ubound");
	ubound_ = *((double*) uBound.get());

	// batch run check
	if(isTrialAdded_)
		return true;

	FloatingPointP flpoint[2];
	for(uint iGen = 1; iGen < 2; iGen++) {

		flpoint[iGen] = (FloatingPointP) new FloatingPoint::FloatingPoint;
		state->setGenotype(flpoint[iGen]);

		flpoint[iGen]->setParameterValue(state, "dimension", (voidP) new uint(1));					

		// initial value of trial parameter should be (as close as possible to) 0				
		flpoint[iGen]->setParameterValue(state, "lbound", (voidP) new double(0));
		flpoint[iGen]->setParameterValue(state, "ubound", (voidP) new double(0.01));
	}
	ECF_LOG(state, 1, "ABC algorithm: added 1 FloatingPoint genotype (trial)");

	// mark adding of trial genotype
	isTrialAdded_ = true;

    return true;
}
开发者ID:llamallamaduck,项目名称:GP-crossover,代码行数:51,代码来源:AlgArtificialBeeColony.cpp

示例7: createNewFoodSource

		 bool createNewFoodSource(IndividualP food, StateP state, DemeP deme)
		 {  
			 //for each food source find a neighbour 
			IndividualP neighbour;
			do{
				neighbour = selRandomOp->select(*deme);
			}while(food->index == neighbour->index);

			//potential new food source
			IndividualP newFood = copy(food);

			FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (food->getGenotype(0));
			std::vector< double > &foodVars = flp->realValue;
			flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (neighbour->getGenotype(0));
			std::vector< double > &neighbourVars = flp->realValue;
			flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (newFood->getGenotype(0));
			std::vector< double > &newFoodVars = flp->realValue;


			uint param = state->getRandomizer()->getRandomInteger((int)foodVars.size());
			double factor = state->getRandomizer()->getRandomDouble();
			double value = foodVars[param] * (1-2*factor)*(foodVars[param]-neighbourVars[param]);
			if (value > ubound)
				value = ubound;
			else if (value <lbound)
				value = lbound;

			//produce a modification on the food source (discover a new food source)
			newFoodVars[param] = value;
			evaluate(newFood);

			flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (food->getGenotype(1));
			double &foodTrial = flp->realValue[0];

//			d)	if the fitness value of the new food source is better than that of the original source,
//					memorize the new source, forget the old one and set trial to 0
//					otherwise keep the old one and increment trial
			if(newFood->fitness->isBetterThan( food->fitness) )
			{
				foodVars[param] = value;
				evaluate(food);
				foodTrial = 0;
			}
			else {
				foodTrial +=1;
			}
			return true;
		}
开发者ID:alojzije,项目名称:old_ECF_algVisualization,代码行数:48,代码来源:mainSelFitOp.cpp

示例8: initialize

bool Individual::initialize(StateP state)
{
	state_ = state;
	this->clear();

	// copy genotypes from State
	for(uint i = 0; i < state->getGenotypes().size(); i++) {
		this->push_back(static_cast<GenotypeP> (state->getGenotypes()[i]->copy()));
		(*this)[i]->setGenotypeId(i);
	}

	// init genotypes
	for(uint i = 0; i < this->size(); i++)
		(*this)[i]->initialize(state);

	return true;
}
开发者ID:icoric4,项目名称:Zagreb-Metro,代码行数:17,代码来源:Individual.cpp

示例9: crossover

//! cross donor vectors with population members to create trial vectors
void DifferentialEvolution::crossover(DemeP deme, uint index, StateP state)
{
	// get population member and corresponding donor vector
	FloatingPoint::FloatingPoint* flp1 = (FloatingPoint::FloatingPoint*) (deme->at(index)->getGenotype().get());
	int dim = (int) flp1->realValue.size();
	FloatingPoint::FloatingPoint* flp2 = (FloatingPoint::FloatingPoint*) donor_vector[index]->getGenotype().get();

	// crossover their elements (keep the result in donor_vector)
	for(uint i = 0; i < flp1->realValue.size(); i++) {
		if (state->getRandomizer()->getRandomDouble() <= CR_ || i == state->getRandomizer()->getRandomInteger(dim)) {
		}
		else {
			flp2->realValue[i] = flp1->realValue[i];
	    }
	}

}
开发者ID:llamallamaduck,项目名称:GP-crossover,代码行数:18,代码来源:AlgDifferentialEvolution.cpp

示例10: hypermutationPhase

		bool hypermutationPhase(StateP state, DemeP deme, std::vector<IndividualP> &clones)
		{	
			uint M;	// M - number of mutations of a single antibody 
			uint k;

			//sort 
			std::sort (clones.begin(), clones.end(), sortPopulationByFitness);

			for( uint i = 0; i < clones.size(); i++ ){ // for each antibody in vector clones
				IndividualP antibody = clones.at(i);
				
				FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (antibody->getGenotype(0));
			    std::vector< double > &antibodyVars = flp->realValue;
				
				k = 1 + i/(dup+1);
				M =(int) ((1- 1/(double)(k)) * (c*dimension) + (c*dimension));
				
				// mutate M times
				for (uint j = 0; j < M; j++){
					uint param = state->getRandomizer()->getRandomInteger((int)antibodyVars.size());
					
					double randDouble1 = state->getRandomizer()->getRandomDouble();
					double randDouble2 = state->getRandomizer()->getRandomDouble();
					double value = antibodyVars[param] + (1-2*randDouble1)* 0.2 *  (ubound - lbound) * pow(2, -16*randDouble2 );
					
					if (value > ubound)
						value = ubound;
					else if (value <lbound)
						value = lbound;

					//produce a mutation on the antibody 
					antibodyVars[param] = value;
				}
				FitnessP parentFitness = antibody->fitness;
				evaluate(antibody);

				// if the clone is better than its parent, reset clone's age
				if(antibody-> fitness->isBetterThan(parentFitness)){					
					flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (antibody->getGenotype(1));
					double &age = flp->realValue[0];
					age = 0;
				} 
			}
			return true;
		}
开发者ID:alojzije,项目名称:old_ECF_algVisualization,代码行数:45,代码来源:main.cpp

示例11: initialize

bool DifferentialEvolution::initialize(StateP state)
{	
	selRandomOp->initialize(state);
	donor_vector.clear();

	// read parameters, check defined genotype (only a single FloatingPoint is allowed)
	voidP F = getParameterValue(state, "F");
	Fconst_ = *((double*) F.get());
	voidP CR = getParameterValue(state, "CR");
	CR_ = *((double*) CR.get());
	FloatingPointP flp (new FloatingPoint::FloatingPoint);
	if(state->getGenotypes()[0]->getName() != flp->getName() || state->getGenotypes().size() != 1) {
		state->getLogger()->log(1, "Error: DE algorithm accepts only a single FloatingPoint genotype!");
		throw ("");
	}

	return true;
}
开发者ID:llamallamaduck,项目名称:GP-crossover,代码行数:18,代码来源:AlgDifferentialEvolution.cpp

示例12: registerParameters

void ModularRobotEvalOp::registerParameters(StateP state)
{
    state->getRegistry()->registerEntry("robot.modules", (voidP) (new uint(1)), ECF::UINT, "Number of modules" );
    state->getRegistry()->registerEntry("robot.runtime", (voidP) (new uint(10000)), ECF::UINT, "Max robot runtime (ms)" );
    state->getRegistry()->registerEntry("robot.timestep", (voidP) (new float(1.0)), ECF::FLOAT, "Time step (ms)" );
    state->getRegistry()->registerEntry("robot.configfile", (voidP) (new std::string()), ECF::STRING, "Robot description file");

    state->getRegistry()->registerEntry("osc.maxamplitude", (voidP) (new uint(90)), ECF::UINT, "Max amplitude of oscillators");
    state->getRegistry()->registerEntry("osc.maxoffset", (voidP) (new uint(90)), ECF::UINT, "Max offset of oscillators");
    state->getRegistry()->registerEntry("osc.maxphase", (voidP) (new uint(360)), ECF::UINT, "Max phase of oscillators");
    state->getRegistry()->registerEntry("osc.maxfrequency", (voidP) (new float(1.0f)), ECF::FLOAT, "Max frequency of oscillators");
}
开发者ID:David-Estevez,项目名称:hormodular,代码行数:12,代码来源:ModularRobotEvalOp.cpp

示例13: initialize

bool SymbRegEvalOp::initialize(StateP state)
{
	domain.clear();
	codomain.clear();

	double datum;
	std::stringstream ss;

	// check if the parameters are defined in the conf. file
	// if not, we return false so the initialization fails
	if(!state->getRegistry()->isModified("domain") ||
		!state->getRegistry()->isModified("codomain"))
		return false;

	voidP sptr = state->getRegistry()->getEntry("domain"); // get parameter value
	ss << *((std::string*) sptr.get()); // convert from voidP to user defined type
	while(ss >> datum) {	// read all the data from string
		domain.push_back(datum);
	}
	ss.str("");
	ss.clear();	// reset stringstream object
	sptr = state->getRegistry()->getEntry("codomain");	// get codomain parameter
	ss << *((std::string*) sptr.get());
	while(ss >> datum) {	// read values
		codomain.push_back(datum);
	}

	if(domain.size() != codomain.size())	// if the parameters are ill defined, return false
		return false;
	nSamples = (uint) domain.size();

	return true;

	//nSamples = 10;
	//double x = -10;
	//for(uint i = 0; i < nSamples; i++) {
	//	domain.push_back(x);
	//	codomain.push_back(x + sin(x));
	//	x += 2;
	//}
	//return true;
}
开发者ID:llamallamaduck,项目名称:GP-crossover,代码行数:42,代码来源:SymbRegEvalOp.cpp

示例14: main

int main(int argc, char **argv)
{
//	argc = 2;
//	argv[1] = "./examples/GAFunctionMin/parametri.txt";

	// PSO algoritam:
	//argv[1] = "./examples/GAFunctionMin/parameters_DE.txt";

	GenHookeJeevesP alg (new GenHookeJeeves);

	StateP state (new State);
	state->addAlgorithm(alg);

	state->setEvalOp(static_cast<EvaluateOpP> (new FunctionMinEvalOp));

	state->initialize(argc, argv);
	state->run();

	return 0;
}
开发者ID:llamallamaduck,项目名称:GP-crossover,代码行数:20,代码来源:main.cpp

示例15: initialize

bool TermStagnationOp::initialize(StateP state)
{
	voidP sptr = state->getRegistry()->getEntry("term.stagnation");
	termStagnation_ = *((uint*) sptr.get());

	// define the default criterion
	if(termStagnation_ == 0) {
		voidP sptr = state->getRegistry()->getEntry("population.size");
		uint demeSize = *((uint*) sptr.get());
		termStagnation_ = 5000 / demeSize;
		if(termStagnation_ < 10)
			termStagnation_ = 5;
		if(termStagnation_ > 200)
			termStagnation_ = 200;
	}

	if(!state->getRegistry()->isModified("term.stagnation"))
		return false;

	return true;
}
开发者ID:icoric4,项目名称:Zagreb-Metro,代码行数:21,代码来源:TermStagnationOp.cpp


注:本文中的StateP类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。